scholarly journals Potato Growth Uniformity as Affected by Subsurface Drip and Seepage Irrigation

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 529C-529
Author(s):  
S.J. Locascio ◽  
A.G. Smajstsrla ◽  
D.H. Hensel ◽  
D.P. Weigartner

Growth and production uniformity of potato (Solanum tuberosum L.) as influenced by conventional seepage irrigation and by subsurface drip irrigation was evaluated in field studies during two seasons in plots 16 rows (18.3 m) wide and 183 m long. Seepage irrigation water was supplied through ditches located on each side of each plot. Drip irrigation water was distributed through buried tubes placed under the beds 6.1 m apart extending the length of the rows. Water application throughout the plots was accomplished more rapidly with the subsurface drip system and water use during the two seasons was 33% less than with the conventional seepage system. Tuber yield during the first season was similar with the two irrigation systems. During the second season, plant growth, tuber development, and tuber yield were sampled on alternate rows beginning on each outside bed, at each end of each plot, and in the middle of the plots. Irrigation method and bed location among the 16 beds had little influence of potato growth and development. With water flow from north to south, plant growth, and tuber yield were significantly higher from potatoes growing at the north end, lowest in the plot center, and intermediate from potatoes growing at the south end. These data indicate that potato production with the two irrigation systems was similar.

EDIS ◽  
2013 ◽  
Vol 2013 (4) ◽  
Author(s):  
Lincoln Zotarelli ◽  
Libby Rens ◽  
Charles Barrett ◽  
Daniel J. Cantliffe ◽  
Michael D. Dukes ◽  
...  

In terms of water use efficiency, the traditional seepage irrigation systems commonly used in areas with high water tables are one of the most inefficient methods of irrigation, though some irrigation management practices can contribute to better soil moisture uniformity. Subsurface drip irrigation systems apply water below the soil surface by microirrigation, improving the water distribution and time required to raise the water table for seepage irrigation. This 6-page fact sheet was written by Lincoln Zotarelli, Libby Rens, Charles Barrett, Daniel J. Cantliffe, Michael D. Dukes, Mark Clark, and Steven Lands, and published by the UF Department of Horticultural Sciences, March 2013. http://edis.ifas.ufl.edu/hs1217


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 970 ◽  
Author(s):  
Pavel Trifonov ◽  
Naftali Lazarovitch ◽  
Gilboa Arye

Narrow profit margins, resource conservation issues and environmental concerns are the main driving forces to improve fertilizer uptake, especially for potatoes. Potatoes are a high value crop with a shallow, inefficient root system and high fertilizer rate requirements. Of all essential nutrients, nitrogen (N) is often limiting to potato production. A major concern in potato production is to minimize N leaching from the root zone. Therefore, the main objective of this study was to examine the potato crop characteristics under drip irrigation with low-discharge (0.6 L h−1) and to determine the optimal combination of irrigation (40, 60, 80, and 100%) and fertigation (0, 50, and 100%) doses. In this study, the 80% (438.6 mm) irrigation dose and a 50% (50 mg N L−1) fertigation dose (W80%F50%) showed that these doses are sufficient for optimal potato yield (about 40 ton ha−1) in conjunction with water and fertilizer savings. Moreover, this treatment did not exhibit any qualitative changes in the potato tuber compared to the 100% treatments. When considering water productivity and yield, one may select a harsher irrigation regime if the available agricultural soils are not a limiting factor. Thus, higher yields can be obtained with lower irrigation and fertigation doses and a larger area.


2004 ◽  
Vol 96 (4) ◽  
pp. 1058-1065 ◽  
Author(s):  
James E. Lanier ◽  
David L. Jordan ◽  
J. Stephen Barnes ◽  
J. Matthews ◽  
Gary L. Grabow ◽  
...  

Author(s):  
Michael D. Dukes ◽  
Dorota Z. Haman ◽  
Freddie Lamm ◽  
John R. Buchanan ◽  
Carl R. Camp

Sign in / Sign up

Export Citation Format

Share Document