scholarly journals 548 Repeated Applications of Growing Medium Surfactants Affect Dianthus barbatus Growth and Development

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 540D-540
Author(s):  
Karen L. Panter ◽  
Steven E. Newman ◽  
Amy M. Briggs ◽  
Michael J. Roll

Three application rates of two new growing medium surfactants were tested under two different irrigation systems on Dianthus barbatus plants. The objectives of the study were to determine if either of the surfactants influenced plant growth and development and to determine if surfactant applications decreased irrigation frequencies. The three levels of surfactant tested were 0 mg·L–1 (control), 10 mg·L–1 applied at each watering, and 100 mg·L–1 applied once a week. Each surfactant and rate was tested on hand-watered and ebb-and-flood irrigated plants. D. barbatus plants were grown for 8 weeks in 875-ml (12.7 cm) pots. Plants were watered when at least one plant per treatment showed visible wilt. Results showed that phytotoxicity symptoms occurred with repeated applications of both surfactants tested, especially at the 10 mg·L–1 rate at each watering. Application of either surfactant at 10 mg·L–1 at each watering decreased plant heights, dry weights, and plant widths, and increased phytotoxicity symptoms over the controls and the 100 mg·L–1 weekly treatments. Fewer waterings were required in surfactant-treated containers.

2015 ◽  
Vol 58 ◽  
pp. 61-70 ◽  
Author(s):  
Paul B. Larsen

Ethylene is the simplest unsaturated hydrocarbon, yet it has profound effects on plant growth and development, including many agriculturally important phenomena. Analysis of the mechanisms underlying ethylene biosynthesis and signalling have resulted in the elucidation of multistep mechanisms which at first glance appear simple, but in fact represent several levels of control to tightly regulate the level of production and response. Ethylene biosynthesis represents a two-step process that is regulated at both the transcriptional and post-translational levels, thus enabling plants to control the amount of ethylene produced with regard to promotion of responses such as climacteric flower senescence and fruit ripening. Ethylene production subsequently results in activation of the ethylene response, as ethylene accumulation will trigger the ethylene signalling pathway to activate ethylene-dependent transcription for promotion of the response and for resetting the pathway. A more detailed knowledge of the mechanisms underlying biosynthesis and the ethylene response will ultimately enable new approaches to be developed for control of the initiation and progression of ethylene-dependent developmental processes, many of which are of horticultural significance.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 508e-508
Author(s):  
Bin Liu ◽  
Royal D. Heins

A concept of ratio of radiant to thermal energy (RRT) has been developed to deal with the interactive effect of light and temperature on plant growth and development. This study further confirms that RRT is a useful parameter for plant growth, development, and quality control. Based on greenhouse experiments conducted with 27 treatment combinations of temperature, light, and plant spacing, a model for poinsettia plant growth and development was constructed using the computer program STELLA II. Results from the model simulation with different levels of daily light integral, temperature, and plant spacing showed that the RRT significantly affects leaf unfolding rate when RRT is lower than 0.025 mol/degree-day per plant. Plant dry weight is highly correlated with RRT; it increases linearly as RRT increases.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1311
Author(s):  
Magdalena Chmur ◽  
Andrzej Bajguz

Brassinolide (BL) represents brassinosteroids (BRs)—a group of phytohormones that are essential for plant growth and development. Brassinazole (Brz) is as a synthetic inhibitor of BRs’ biosynthesis. In the present study, the responses of Wolffia arrhiza to the treatment with BL, Brz, and the combination of BL with Brz were analyzed. The analysis of BRs and Brz was performed using LC-MS/MS. The photosynthetic pigments (chlorophylls, carotenes, and xanthophylls) levels were determined using HPLC, but protein and monosaccharides level using spectrophotometric methods. The obtained results indicated that BL and Brz influence W. arrhiza cultures in a concentration-dependent manner. The most stimulatory effects on the growth, level of BRs (BL, 24-epibrassinolide, 28-homobrassinolide, 28-norbrassinolide, catasterone, castasterone, 24-epicastasterone, typhasterol, and 6-deoxytyphasterol), and the content of pigments, protein, and monosaccharides, were observed in plants treated with 0.1 µM BL. Whereas the application of 1 µM and 10 µM Brz caused a significant decrease in duckweed weight and level of targeted compounds. Application of BL caused the mitigation of the Brz inhibitory effect and enhanced the BR level in duckweed treated with Brz. The level of BRs was reported for the first time in duckweed treated with BL and/or Brz.


Author(s):  
Yuki Nakamura ◽  
Anh H. Ngo

The article Non-specific phospholipase C (NPC): an emerging class of phospholipase C in plant growth and development, was originally published Online First without Open Access.


Sign in / Sign up

Export Citation Format

Share Document