scholarly journals 090 Identification and Genetic Relatedness among Pecan Cultivars Detected by Randomly Amplified Polymorphic DNA (RAPD) Analysis

HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 404B-404
Author(s):  
Patrick J. Conner ◽  
Bruce W. Wood

Genetic variation among pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars was studied using randomly amplified polymorphic DNA (RAPD) markers. Using a combination of primers, a unique fingerprint was produced for each of the pecan genotypes studied. The genetic relatedness between 44 cultivars was estimated using more than 100 RAPD markers. Genetic distances based on the simple matching coefficient varied from 0.91 to 0.59. The phenetic dendogram developed from cluster analysis showed relatively weak grouping association. However, cultivars with known pedigrees usually grouped with at least one of the parents and genetic similarity estimates appear to agree with known genetic relationships. Using RAPD information in determining genetic relationships among pecan cultivars with unknown or questionable pedigrees and the integration of that knowledge into the breeding program is discussed.

2001 ◽  
Vol 126 (4) ◽  
pp. 474-480 ◽  
Author(s):  
Patrick J. Conner ◽  
Bruce W. Wood

Genetic variation among pecan [Carya illinoinensis (Wangenh.) C. Koch] cultivars was studied using randomly amplified polymorphic DNA (RAPD) markers. Using a combination of primers, a unique fingerprint is presented for each of the pecan genotypes studied. The genetic relatedness between 43 cultivars was estimated using 100 RAPD markers. Genetic distances, based on the similarity coefficient of Nei & Li, varied from 0.91 to 0.46, with an average value of 0.66 among all cultivars. The phenetic dendrogram developed from cluster analysis showed relatively weak grouping association. However, cultivars with known pedigrees usually grouped with at least one of the parents and genetic similarity estimates appear to agree with known genetic relationships.


Genetika ◽  
2015 ◽  
Vol 47 (2) ◽  
pp. 571-580
Author(s):  
Vladan Popovic ◽  
Aleksandar Lucic ◽  
Danijela Ristic ◽  
Ljubinko Rakonjac ◽  
Sabahudin Hadrovic ◽  
...  

The analysis of Bald cypress genetic variability at the level of test trees was performed using RAPD (Random Amlified Polymorphic DNA) markers. RAPD analysis was performed on 20 test trees with 13 primers. A total of ten primers gave a clear picture while three primers amplified weakly. 60 is a total number of detected bands obtained by RAPD analysis with 10 selected primers, and the average number of bands is 6. Based on presence/absence of RAPD fragments among all 20 Bald cypress test trees were calculated similarity coefficients by Dice and they range from 0.73 to 1. Based on similarity coefficients was performed the cluster analysis and results were presented as a dendrogram. All 20 test trees were grouped into two sub-clusters. Test trees 1, 4 and 11 were grouped in the first sub-cluster while other test trees were grouped in the second sub-cluster. By analysis of relations within every sub-cluster and sub-sub-cluster the existence of genetic distances between observed test trees can be noticed. The greatest similarity is between test trees 2, 12, 15 and 18. The results of genetic similarity and distance between observed test trees indicate the overwhelming presence of genetic diversity.


2011 ◽  
Vol 38 (No. 4) ◽  
pp. 134-141 ◽  
Author(s):  
S. Bayazit ◽  
B. Imrak ◽  
A. Küden ◽  
M. Kemal Güngör

Quince (Cydonia oblonga Mill.) is a minor fruit crop, which is primarily used for marmalade, jam, sauce and as rootstocks for pears. Different cultivated and local quince genotypes are grown in almost all parts of Turkey for fruit usage. In this study, randomly amplified polymorphic DNA (RAPD) technology was used to study the genetic relationships among 13 quince accessions selected from different parts of Turkey. Thirty decamer primers were used and 14 of them did not produce any polymorphism. The remaining 16 primers ranged in their amplification fragments between one (P-402, P-437, OPA 10, OPA 16, OPA 18 and OPA-19) and five (OPA-06 and OPA-07). The size of fragments varied from 100 to 1500 bp. Similarity values among the studied genotypes ranged between 0.483 and 0.925. The resulting dendrogram clustered into two groups (0.69 similarity value) based on evaluation of genetic similarities and differences. The results suggest that RAPD analysis could be used to distinguish and determine genetic variation among quince accessions. Also, the obtained clustering based on RAPD markers agreed to some extent with the geographical origin of the studied set of quince accessions.


2002 ◽  
Vol 127 (2) ◽  
pp. 262-270 ◽  
Author(s):  
Yuanwen Teng ◽  
Kenji Tanabe ◽  
Fumio Tamura ◽  
Akihiro Itai

A total of 118 Pyrus sp. (pear) and cultivars native mainly to east Asia were subjected to randomly amplified polymorphic DNA (RAPD) analysis to evaluate genetic variation and relationships among the accessions. Two hundred fifty RAPD markers were scored from 20 decamer primers. RAPD markers specific to species were identified. Clustering analysis revealed two divisions: one comprising cultivars of P. communis L., and the other including all accessions of Pyrus native to east Asia. The grouping of the species and cultivars by RAPD data largely agrees with morphological pear taxonomy. However, some noted incongruence existed between two classification methods. Pyrus calleryana Dcne. clustered together with P. koehnei Schneid., P. fauriei Schneid. and P. dimorphophylla Makino. Pyrus betulaefolia Bge. clustered with P. ×hopeiensis Yu and P. ×phaeocarpa Rehd. A noncultivated clone of P. aromatica Kikuchi et Nakai grouped with P. aromatica cultivars. Pyrus hondoensis Nakai et Kikuchi and cultivars of P. ussuriensis Max. formed a single group. Some accessions from Korea (named Korean pear) had species-specific RAPD markers and comprised an independent group. Most of the Chinese white pears clustered together with most of the Chinese sand pears. Based on the present results, the new nomenclature P. pyrifolia var. sinensis (Lindley) Teng et Tanabe for Chinese white pear was suggested. Most accessions of Japanese pears fell into one main group, whereas pear cultivars from Kochi Prefecture of Japan subclustered with some Chinese sand pears and one accession from Korea. Our results infer that some local Japanese pear cultivar populations may have been derived from cultivars native to Kochi Prefecture in Shikoku region, and that the latter may have been introduced from ancient China and/or Korea.


Author(s):  
Rodica POP ◽  
Doru PAMFIL ◽  
Monica HÂRŢA ◽  
Ioan HAŞ ◽  
Iulia POP

Genetic analysis with RAPD markers has been extensively used to determine diversity among maize genotypes. The aim of the present study was to estimate genetic relationships among 70 genotypes, provided from SCDA Turda Cluj germplasm collection. RAPD analysis was performed with 14 decamer primers. These primers generated, among the studied genotypes, a number of polymorphic bands comprised between 13 bands (OPA 04) and 7 bands (OPAL 20). The highest numbers of polymorphic bands were obtained with primer OPA 04, respectively 13 bands, following by OPO 12 (12 polymorphic bands), OPAB 11 and OPA 17 (11 polymorphic bands). Lowest number was obtained with primer OPAL 20, respectively 7 polymorphic bands. Genetic distances were established using Nei-Li coefficient and UPGMA dendrogram was constructed with RAPDistance 1.04 software. The built dendrogram shows phylogenetic relationships between genotypes analyzed.


HortScience ◽  
2004 ◽  
Vol 39 (5) ◽  
pp. 948-951 ◽  
Author(s):  
A. Belaj ◽  
Z. Satovic ◽  
I. Trujillo ◽  
L. Rallo

Eighty-two Spanish olive cultivars from the World Germplasm Bank of the Centro de Investigación y Formación Agraria (CIFA) Alameda del Obispo in Cordoba (Spain) were analysed by RAPD markers to assess their genetic relatedness and to study patterns of genetic variation. The dendrogram based on unweighted pair group cluster analysis using Jaccard's index included two major groups that consisted mostly of cultivars from the southern and central part of Spain. Clustering together of cultivars from the Levante zone was also observed. The pattern of genetic variation among olive cultivars from three different Spanish zones (Levante, central and Andalusia) was analysed by means of the analysis of molecular variance (AMOVA). Although most of the genetic variability was attributable to differences of cultivars within each zone (95.88%), significant φ-values among zones (φst = 0.041; p < 0.001) suggested the existence of phenotypic differentiation. These results are consistent with the predominantly allogamous nature of Olea europaea L. species. Significant values of φst for the pair Andalusia/Levante indicate the presence of differentiation. The negative value of φst observed in the case of the Andalusia/central pair suggests that some varieties from central Spain are more similar to the Andalusian ones than to the varieties of their own geographic area, and vice versa.


Genetika ◽  
2020 ◽  
Vol 52 (1) ◽  
pp. 107-114
Author(s):  
Emre Sevġndġk ◽  
Yavuz Paksoy ◽  
Melike Aydoğan ◽  
Feyzanur Topseçer

In this study, genetic variation and phylogenetic analysis of 13 populations of 6 species belonging to Conringia genus spreading in Turkey were performed using RAPD markers. Genomic DNA isolation from the leaves of the Conringia plant samples was performed via using a commercial kit. Seven RAPD primers were used to identify the genetic diversity between the populations. Polymerase Chain Reaction (PCR) was performed using DNA samples and primers. PCR products were resolved using agarose gel electrophoresis and visualized under UV light. All gel images were analyzed, and the absence and presence of polymorphic bands were scored. The total of 34 DNA bands were detected by seven RAPD primers. PAUP 4.0b10 analysis program was used to calculate phylogenetic tree and genetic distances between the species. The phylogenetic tree was obtained using the UPGMA algorithm and it was composed of two clades. According to the PAUP analysis, the species having the closest distance between each other are C. planisiliqua (Ankara-Aya?) and C. planisiliqua (Ankara-Nall?han) with the value of 0.000 and those having the longest distance are C. grandiflora (Akseki ?ukurk?y) and C. orientalis (Elaz??-Baskil) with the value of 0.6000. The results suggest that the RAPD markers are useful tools to demonstrate the genetic relationships between populations of the Conringia species.


Jurnal Biota ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 42-50
Author(s):  
Muhammad Khoerol Anam ◽  
Adi Amurwanto ◽  
Kusbiyanto Kusbiyanto ◽  
Hendro Pramono ◽  
M Husein Sastranegara ◽  
...  

Segara Anakan areas can be divided into three different regions according to their salinity. Salinity differences suggested that Commerson’s anchovy population in that area can be divided into three subpopulations due to genetic differences. Genetic differences among subpopulation can be assessed through a population genetic study using random amplified polymorphic DNA. This study aims to evaluate the genetic variation and differences of Commerson's anchovy (Stolephorus commersonnii) collected at three different water salinities in Segara Anakan estuary Cilacap Indonesia. Total genomic DNA was isolated using the Chelex method. Genetic diversity and differences were assessed using RAPD markers and were analyzed statistically using an analysis of molecular variance, as implemented in Arlequin software.  The results showed that high genetic diversity was observed within the subpopulations. However, no significant genetic differences were observed among subpopulations which indicate genetic similarity. A high number of offspring are likely to cause high genetic variation within subpopulations.  Adult and larvae migration is the cause of genetics similarity across Segara Anakan. Another impressive result is that water salinity did not affect the genetic characteristic of Commerson,s anchovy. Genetic similarity of Commerson’s anchovy indicates that Segara Anakan forms a single genetic conservation unit.


Genome ◽  
1997 ◽  
Vol 40 (5) ◽  
pp. 600-606 ◽  
Author(s):  
Ines Swoboda ◽  
Prem L. Bhalla

The use of randomly amplified polymorphic DNA (RAPD) to study genetic variability in Scaevola (family Goodeniaceae), a native Australian species used in ornamental horticulture, is demonstrated. Plants of the genus Scaevola are commonly known as "fan flowers," due to the fan-like shape of the flowers. Nineteen accessions of Scaevola (12 cultivated and 7 wild) were studied using 20 random decamer arbitrary primers. Eight primers gave a distinct reproducible amplification profile of 90 scorable polymorphic fragments, enabling the differentiation of the Scaevola accessions. RAPD amplification of genomic DNA revealed a high genetic variability among the different species of Scaevola studied. Molecular markers were used to calculate the similarity coefficients, which were then used for determining genetic distances between each of the accessions. Based on genetic distances, a dendrogram was constructed. Though the dendrogram is in general agreement with the taxonomy, it also highlights discrepancies in the classification. The RAPD data showed that Scaevola aemula (series Pogogynae) is closer to Scaevola glandulifera of series Globuliferae than to the rest of members of series Pogogynae. In addition, the RAPD banding pattern of white flower S. aemula, one of the commercial cultivars, was identical to that of Scaevola albida, indicating their genetic similarity. Our study showed that there is a large genetic distance between commercial cultivars of Scaevola (Purple Fanfare, Pink Perfection, and Mauve Cluster), indicating considerable genetic variation among them. The use of RAPDs in intra- and inter-specific breeding of Scaevola is also explored.Key words: Scaevola, Australian native, RAPD, genetic distance, genetic variability.


HortScience ◽  
1997 ◽  
Vol 32 (1) ◽  
pp. 122-124 ◽  
Author(s):  
Jing-Tian Ling ◽  
Roger Sauve ◽  
Nick Gawel

Randomly amplified polymorphic DNA (RAPD) techniques were used to compare the DNA from leaf tissues of nine commercial poinsettia (Euphorbia pulcherrima Wild ex Klotzsch) cultivars. Amplification occurred in 57 out of 60 (95%) tested primers. Nine primers that revealed polymorphisms among cultivars were selected for further evaluation. Forty-eight RAPD bands were scored from these primers, and 33 (69%) were polymorphic. All tested cultivars could be discriminated with seven bands generated from primers OPB7 and OPC13. Results of a UPGMA cluster analysis and principal components analysis placed the nine cultivars into two groups: one group consisted of `Jingle Bells', `Supjibi', and `V-17 Angelika', the other of `V-14 Glory', `Red Sails', `Jolly Red', and `Freedom'. `Lilo Red' and `Pink Peppermint' belonged to the latter group, but were relatively distant from other cultivars in that group. These results indicate that RAPDs are efficient for identification of poinsettia cultivars and for determination of the genetic relationships among cultivars.


Sign in / Sign up

Export Citation Format

Share Document