scholarly journals Appearance of Xylella Fastidiosa in Pierce's Disease resistant and Susceptible Grapevines

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 826B-826
Author(s):  
Xia Xu* ◽  
Zhongbo Ren ◽  
Jiang Lu

Pierce's Disease (PD) is a major factor limiting grape production in the southeast United State. This disease is caused by a bacterium, Xylella fastidiosa Wells et al., which is transmitted to the xylem system of the grapevines primarily by glassy-winged sharpshooters (Homalodisca coagulata Say). Once it is in the xylem, the X. fastidiosa will use the xylem sap as a nutrient source to multiply, colonize, and eventually plug the xylem vessels and cause the PD in susceptible cultivars. On the other hand, symptoms of PD in tolerant cultivars do not appear until fruit maturation, and symptoms are rarely observed in PD resistant cultivars. In order to understand the correlation between X. fastidiosa and PD symptom development, a study was initialed to monitor X. fastidiosa in xylem of resistant, tolerant, and susceptible vines on a monthly basis. Presence of X. fastidiosa was detected directly from xylem sap of field-grown vines by medium culture and confirmed by polymerase chain reaction (PCR). Xylella fastidiosa was detectable throughout the growing season in PD susceptible cultivar `Chardonnay', PD tolerant Florida hybrid grape `Blanc du Bois', and muscadine cultivar `Carlos'. The bacteria were also appeared in the dormant vines with high density in cultivars `Chardonnay' and `Blanc du Bios'. Although X. fastidiosa was also found in dormant canes of `Carlos', the density decreased throughout the late fall and winter months, and they were hardly found before June. The results indicated that X. fastidiosa were carried over from previous season in cultivars `Chardonnay' and `Blanc du Bois', while in PD tolerant cultivar `Carlos', they were newly acquired from the sharpshooter feedings during the growing season.

EDIS ◽  
1969 ◽  
Vol 2004 (18) ◽  
Author(s):  
Tracy Conklin ◽  
Russell F. Mizell, III

The glassy-winged sharpshooter, Homalodisca coagulata (Say), is a large leafhopper species native to the southeastern United States. It is one of the main vectors of the bacterium Xylella fastidiosa, a plant pathogen that causes a variety of plant diseases, including phony peach disease of peach and Pierce's disease of grape. Though usually not a serious pest in the area of its native distribution, the glassy-winged sharpshooter has recently been introduced into southern California, where it has become a serious threat to viticulture due to its ability to vector Pierce's disease.  This document is EENY-274, one of a series of Featured Creatures from the Entomology and Nematology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Published: October 2002. Revised: July 2004. EENY-274/IN552: Glassy-Winged Sharpshooter, Homalodisca vitripennis (=coagulata) (Germar) (Insecta: Hemiptera: Cicadellidae: Cicadellinae) (ufl.edu)


2004 ◽  
Vol 94 (10) ◽  
pp. 1136-1144 ◽  
Author(s):  
K. M. Tubajika ◽  
E. L. Civerolo ◽  
M. A. Ciomperlik ◽  
D. A. Luvisi ◽  
J. M. Hashim

The incidence of Pierce's disease (PD), caused by Xylella fastidiosa, was monitored in 11 naturally infested commercial vineyards to determine the presence of an X. fastidiosa vector, Homalodisca coagulata (glassy-winged sharpshooter [GWSS]), to examine the spatial patterns of the disease and elucidate possible influences of surrounding environments. Disease incidence ranged from <1 to 65% among vineyards in 2001. Our efforts to trap or capture potential disease vectors have indicated that the GWSS is the most likely vector. Disease incidence doubled in most vineyards during the 2002 production season. Spatial patterns of symptomatic vines in 2001 and 2002, as determined by ordinary runs analysis, showed strong evidence for within- and across-row aggregation of infected vines. In most fields, they were no disease gradients observed relative to GWSS source (e.g., citrus). Within fields, however, disease incidence displayed strong spatial dependence and a high degree of anisotropy, indicating strongly aggregated patterns of disease with distinct directional orientation. The within-row (0°) and across-row (90°) orientations generally were the predominant directions of increased disease incidence, consistent with vine-to-vine spread of X. fastidiosa. We concluded that the distribution of PD in vineyards reflected the feeding pattern of vectors carrying X. fastidiosa. Based on these results, effective PD management is likely to be based on practices that reduce significant insect vector populations and remove infected vines as soon as identified and on the use of resistant cultivars.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1127E-1128
Author(s):  
Jiang Lu ◽  
Elvis Clarke ◽  
Zhong-bo Ren

Although some of the American native Vitis species and their hybrids, particularly those originated from the southeastern United States, have been known for resistance to Pierce's disease (PD), their resistant status against the glassy-winged sharp shooter [GWSS, Homalodisca coagulata (Say)], the vector transmitting PD pathogen (Xylellafastidiosa Well), has not been reported. To determine GWSS feeding preferences on different grape species/cultivars and correlations of feeding to Pierce's disease development, a survey was conducted at Florida A&M University, Tallahassee. The feeding preference of GWSS on different species/cultivars was evaluated in two different ways: 1) count the number of GWSS on different grapevines in the field; and 2) determine the feeding preference by measuring the excretion of the GWSS feeding on difference grape species/cultivars, including highly susceptible V. vinifera cultivars, native American grape species and hybrids, and muscadine grapes. Results from this study indicated that the frequency of GWSS visits on different grapevines varied among the species/cultivars investigated. For example, PD-resistant grape V. rotundifolia (muscadine grape) had significantly fewer GWSS visits than did the PD-susceptible V. vinifera grape. The frequency of GWSS visits to V. labrusca, the native American grape susceptible to PD, was intermediate between those found on V. rotundifolia and V. vinifera. Similarly, the GWSS sucked more xylem sap when they fed on PD-susceptible grapevines than on PD-resistant ones. Overall, there is a positive correlation between the GWSS visits/feeding and the status of grapevine resistance/susceptibility to Pierce's disease.


2016 ◽  
Vol 4 (2) ◽  
Author(s):  
J. Chen ◽  
F. Wu ◽  
Z. Zheng ◽  
X. Deng ◽  
L. P. Burbank ◽  
...  

Xylella fastidiosa subsp. fastidiosa causes Pierce’s disease of grapevine. Presented here is the draft genome sequence of the Stag’s Leap strain, previously used in pathogenicity/virulence assays to evaluate grapevine germplasm bearing Pierce’s disease resistance and a phenotypic assessment of knockout mutants to determine gene function.


PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0160978 ◽  
Author(s):  
Lingyun Hao ◽  
Paulo A. Zaini ◽  
Harvey C. Hoch ◽  
Thomas J. Burr ◽  
Patricia Mowery

2015 ◽  
Vol 116 ◽  
pp. 130-137 ◽  
Author(s):  
Thomas J. Aldrich ◽  
Philippe E. Rolshausen ◽  
M. Caroline Roper ◽  
Jordan M. Reader ◽  
Matthew J. Steinhaus ◽  
...  

Plant Disease ◽  
2002 ◽  
Vol 86 (11) ◽  
pp. 1206-1210 ◽  
Author(s):  
W.-B Li ◽  
C. -H. Zhou ◽  
W. D. Pria ◽  
D. C. Teixeira ◽  
V. S. Miranda ◽  
...  

Xylella fastidiosa causes citrus variegated chlorosis (CVC) disease in Brazil and Pierce's disease of grapevines in the United States. Both of these diseases cause significant production problems in the respective industries. The recent establishment of the glassy-winged sharpshooter in California has radically increased the threat posed by Pierce's disease to California viticulture. Populations of this insect reach very high levels in citrus groves in California and move from the orchards into the vineyards, where they acquire inoculum and spread Pierce's disease in the vineyards. Here we show that strains of X. fastidiosa isolated from diseased citrus and coffee in Brazil can incite symptoms of Pierce's disease after mechanical inoculation into seven commercial Vitis vinifera varieties grown in Brazil and California. Thus, any future introduction of the CVC strains of X. fastidiosa into the United States would pose a threat to both the sweet orange and grapevine industries. Previous work has clearly shown that the strains of X. fastidiosa isolated from Pierce's disease- and CVC-affected plants are the most distantly related of all strains in the diverse taxon X. fastidiosa. The ability of citrus strains of X. fastidiosa to incite disease in grapevine is therefore surprising and creates an experimental system with which to dissect mechanisms used by X. fastidiosa in plant colonization and disease development using the full genome sequence data that has recently become available for both the citrus and grapevine strains of this pathogen.


2000 ◽  
Vol 46 (3) ◽  
pp. 291-293 ◽  
Author(s):  
C J Chang ◽  
R C Donaldson

A defined medium (XF-26) containing 3 inorganic salts, 2 tricarboxylic acids, 17 amino acids, potato starch, phenol red, and agar was used as the starting point for the study. Deletions of one or more ingredients were performed to prepare various media. A medium was considered able to support growth of Xylella fastidiosa strains responsible for Pierce's disease in grapes, only after 10 serial passages had been completed. Of 3 inorganic salts, K2HPO4 and MgSO4·7H2O were essential, and (NH4)2HPO4 was nonessential for growth. Of the Krebs cycle intermediates, all (citrate, alpha-ketoglutarate, succinate, fumarate, malate, and oxaloacetate) but isocitrate supported growth of cultivated strains, whereas only citrate alone or citrate plus succinate supported the primary isolation of PD bacterium. Of 17 amino acids, 6 uncharged polar R groups (asparagine, cysteine, glutamine, glycine, serine, and threonine) supported growth, whereas 8 nonpolar R groups (alanine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, and valine) or 3 positively charged polar groups (arginine, histidine, and lysine) did not. Starch proved to be nonessential.Key words: Xylella fastidiosa, nutritional requirements.


Sign in / Sign up

Export Citation Format

Share Document