scholarly journals Crop Simulation and Crop Evapotranspiration for Irrigation Management of Spinach

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 971B-971
Author(s):  
Giovanni Piccinni ◽  
Thomas Gerik ◽  
Evelyn Steglich ◽  
Daniel Leskovar ◽  
Jonghan Ko ◽  
...  

Improving irrigation water management for crop production is becoming increasingly important in South Texas as the water supplies shrink and competition with urban centers in the region grows. Crop simulators and crop evapotranspiration (ET) are appealing methods for estimating crop water use and irrigation requirements because of the low investment in time and dollars required by on-site (in-field) measurement of soil and/or crop water status. We compared the effectiveness of the Crop.m.an/EPIC crop simulator and Crop-ET approaches estimating the crop water use for irrigation scheduling of spinach. In-ground weighing lysimeters were used to measure real-time spinach water use during the growing season. We related the water use of the spinach crop to a well-watered reference grass crop to determine crop coefficients (Kc) to assist in predicting accurate crop needs using available meteorological data. In addition, we ran several simulations of CropMan to evaluate the best management for growing spinach under limited water availability. Results show the possibility of saving about 61 to 74 million m3 of water per year in the 36,500 ha of irrigated farms of the Edwards aquifer region if proper irrigation management techniques are implemented in conjunction with the newly developed decision support systems. We discuss the implications of the use of these technologies for improving the effectiveness of irrigation and for reducing irrigation water requirements in South Texas.

2020 ◽  
Vol 4 (3) ◽  
pp. 292-299
Author(s):  
Mubarak Lawal ◽  
Muyideen Abubakar Oyebode ◽  
Jamilu Suleiman

A field experiment was conducted to evaluate the effect of irrigation regimes on yield and water use efficiency of maize crop (Zea Mays L.; SAMMAZ 29) under different irrigation scheduling. Randomized Complete Block Design (RCBD) was used and the experiment consisted of three levels of irrigation water application depth of 100%, 75% and 50% replacement of Total Available Water Capacity (TAWC) and three irrigation intervals of 7, 10 and 13 days replicated three times. Irrigation water was applied into each of 0.75 m × 90 m furrow using siphon tube of 7.5 cm diameter and 200 cm length. The results showed that the highest average irrigation water use efficiency was at I10D75% with 0.71 kg/m3 while the least was at I13D50% with 0.41 kg/m3. The highest average crop water use efficiency (CWUE) was at I10D75% with 0.79 kg/m3 while the least was at I13D75% with 0.56 kg/m3. The highest average maize yield was at I7D100% with 3580 kg/ha while the least was at I13D50% with 1200 kg/ha. The study established that irrigation after every 10 days interval with 75% replacement of TAWC using furrow irrigation of 90 m lengths produced the highest crop water use efficiency, thus saving about 48.3% of irrigation water (amounting to 329 mm) with reference to control (I7D100%) which causes a yield reduction of about 19% (amounting to 680 kg/ha). This efficient water usage saved cost and also helps to address the problem of high water table of the study area.


HortScience ◽  
2009 ◽  
Vol 44 (2) ◽  
pp. 421-425 ◽  
Author(s):  
Giovanni Piccinni ◽  
Jonghan Ko ◽  
Thomas Marek ◽  
Daniel I. Leskovar

Weighing lysimeters are used to measure crop water use during the growing season. By relating the water use of a specific crop to a well-watered reference crop such as grass, crop coefficients (KC) can be developed to assist in predicting crop needs using meteorological data available from weather stations. This research was conducted to determine growth stage-specific KC and crop water use for onions (Allium cepa L.) and spinach (Spinacia oleracea L.) grown under south Texas conditions. Seven lysimeters, consisting of undisturbed 1.5 × 2.0 × 2.2-m deep soil monoliths, comprise the Texas AgriLife Research–Uvalde lysimeter facility. Six lysimeters, weighing ≈14 Mg, have been placed each in the middle of a 1-ha field beneath a linear low-energy precision application irrigation system. A seventh lysimeter was established to measure reference grass reference evapotranspiration. Daily water use for onion and spinach was measured at 5-min intervals. Crop water requirements, KC determination, and comparison with existing Food and Agricultural Organization (FAO) KC values were determined over a 2-year period for each crop. The KC values determined over the growing seasons varied from 0.2 to 1.3 for onion and 0.2 to 1.5 for spinach with some of the values in agreement with those from FAO. It is assumed that the application of growth stage-specific KC will assist in irrigation management and provide precise water applications for a region of interest.


1984 ◽  
Vol 11 (1) ◽  
pp. 4-6 ◽  
Author(s):  
D. K. Pahalwan ◽  
R. S. Tripathi

Abstract Field experiment was conducted during dry season of 1981 and 1982 to determine the optimal irrigation schedule for summer peanuts (Arachis hypogaea L.) in relation to evaporative demand and crop water requirement at different growth stages. It was observed that peanut crop requires a higher irrigation frequency schedule during pegging to pod formation stage followed by pod development to maturity and planting to flowering stages. The higher pod yield and water use efficiency was obtained when irrigations were scheduled at an irrigation water to the cumulative pan evaporation ratio of 0.5 during planting to flowering, 0.9 during pegging to pod formation and 0.7 during pod development to maturity stage. The profile water contribution to total crop water use was higher under less frequent irrigation schedules particularly when the irrigations were scheduled at 0.5 irrigation water to the cumulative pan evaporation ratio up to the pod formation stage.


2017 ◽  
Author(s):  
◽  
Akinola Mayowa Ikudayisi

Water is an essential natural resource for human existence and survival on the earth. South Africa, a water stressed country, allocates a high percentage of its available consumptive water use to irrigation. Therefore, it is necessary that we optimize water use in order to enhance food security. This study presents the development of mathematical models for irrigation scheduling of crops, optimal irrigation water release and crop yields in Vaal Harts irrigation scheme (VIS) of South Africa. For efficient irrigation water management, an accurate estimation of reference evapotranspiration (ETₒ) should be carried out. However, due to non-availability of enough historical data for the study area, mathematical models were developed to estimate ETₒ. A 20-year monthly meteorological data was collected and analysed using two data–driven modeling techniques namely principal component analysis (PCA) and adaptive neuro-fuzzy inference systems (ANFIS). Furthermore, an artificial neural network (ANN) model was developed for real time prediction of future ETₒ for the study area. The real time irrigation scheduling of potatoes was developed using a crop growth simulation model called CROPWAT. It was used to determine the crop water productivity (CWP), which is a determinant of the relationship between water applied and crop yield. Finally, a new and novel evolutionary multi-objective optimization algorithm called combined Pareto multi-objective differential evolution (CPMDE) was applied to optimize irrigation water use and crop yield on the VIS farmland. The net irrigation benefit, land area and irrigation water use of maize, potatoes and groundnut were optimized. Results obtained show that ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity have less significance on the value of ETₒ. Also, ANN models with one hidden layer showed better predictive performance compared with other considered configurations. A 5-day time step irrigation schedule data and graphs showing the crop water requirements and irrigation water requirements was generated. This would enable farmers know when, where, and how much water to apply to a given farmland. Finally, the employed CPMDE optimization algorithm produced a set of non-dominated Pareto optimal solutions. The best solution suggests that maize, groundnut and potatoes should be planted on 403543.44 m2, 181542.00 m2 and 352876.05 m2areas of land respectively. This solution generates a total net benefit of ZAR 767,961.49, total planting area of 937961.49 m2 and irrigation water volume of 391,061.52 m3. Among the three crops optimized, maize has the greatest land area, followed by potatoes and groundnut. This shows that maize is more profitable than potatoes and groundnut with respect to crop yield and water use in the study area.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 99 ◽  
Author(s):  
Jerry Moorhead ◽  
Gary Marek ◽  
Prasanna Gowda ◽  
Xiaomao Lin ◽  
Paul Colaizzi ◽  
...  

Evapotranspiration (ET) is an important component in the water budget and used extensively in water resources management such as water planning and irrigation scheduling. In semi-arid regions, irrigation is used to supplement limited and erratic growing season rainfall to meet crop water demand. Although lysimetery is considered the most accurate method for crop water use measurements, high-precision weighing lysimeters are expensive to build and operate. Alternatively, other measurement systems such as eddy covariance (EC) are being used to estimate crop water use. However, due to numerous explicit and implicit assumptions in the EC method, an energy balance closure problem is widely acknowledged. In this study, three EC systems were installed in a field containing a large weighing lysimeter at heights of 2.5, 4.5, and 8.5 m. Sensible heat flux (H) and ET from each EC system were evaluated against the lysimeter. Energy balance closure ranged from 64% to 67% for the three sensor heights. Results showed that all three EC systems underestimated H and consequently overestimated ET; however, the underestimation of H was greater in magnitude than the overestimation of ET. Analysis showed accuracy of ET was greater than energy balance closure with error rates of 20%–30% for half-hourly values. Further analysis of error rates throughout the growing season showed that energy balance closure and ET accuracy were greatest early in the season and larger error was found after plants reached their maximum height. Therefore, large errors associated with increased biomass may indicate unaccounted-for energy stored in the plant canopy as one source of error. Summing the half-hourly data to a daily time-step drastically reduced error in ET to 10%–15%, indicating that EC has potential for use in agricultural water management.


1971 ◽  
Vol 51 (4) ◽  
pp. 255-266 ◽  
Author(s):  
W. BAIER

Daily and monthly latent evaporation (LE) estimates obtained from an earlier-described regression-type model are compared with estimates from Penman’s (PE) and Thornthwaite’s (PET) techniques. Penman’s PE was selected as a control. Daily PE estimates were more closely related to LE than to PET estimates, as seen from the coefficients of determination (100 CD) of 52 and 21%, respectively. Similarly, variations of monthly PE means were more closely associated with variations of monthly LE means (65%) than with PET means (45%). Both the LE and PET models use the same standard climatic data as input. The improvement of 31% for the daily values and 20% for the monthly means results from using maximum and minimum air temperatures separately in the LE model, instead of mean air temperature as in the PET technique. The least bias in PE as derived from converted LE estimates was obtained by a factor of 0.0094 cm/cm3 (0.0037 in./cm3). However, a review of literature on ratios of consumptive water use by irrigated crops to LE measurements suggested a factor in the order of 0.0086 cm/cm3 (0.0034 in./cm3). This factor has been successfully employed in irrigation scheduling and water budgeting experiments. The discrepancy could result from the consumptive crop water use for part of the growing season being less than Penman’s PE as computed in this study. Although eventually seasonally adjusted conversion factors based on crop development phases are preferred, the findings warrant the use of the LE model in various climates for estimating either PE, by applying 0.0094 cm/cm3 (0.0037 in./cm3), or seasonal consumptive crop water use, by applying 0.0086 cm/cm3 (0.0034 in./cm3).


2011 ◽  
Vol 15 (10) ◽  
pp. 3061-3070 ◽  
Author(s):  
J. M. Sánchez ◽  
R. López-Urrea ◽  
E. Rubio ◽  
V. Caselles

Abstract. Estimates of surface actual evapotranspiration (ET) can assist in predicting crop water requirements. An alternative to the traditional crop-coefficient methods are the energy balance models. The objective of this research was to show how surface temperature observations can be used, together with a two-source energy balance model, to determine crop water use throughout the different phenological stages of a crop grown. Radiometric temperatures were collected in a sorghum (Sorghum bicolor) field as part of an experimental campaign carried out in Barrax, Spain, during the 2010 summer growing season. Performance of the Simplified Two-Source Energy Balance (STSEB) model was evaluated by comparison of estimated ET with values measured on a weighing lysimeter. Errors of ±0.14 mm h−1 and ±1.0 mm d−1 were obtained at hourly and daily scales, respectively. Total accumulated crop water use during the campaign was underestimated by 5%. It is then shown that thermal radiometry can provide precise crop water necessities and is a promising tool for irrigation management.


EDIS ◽  
2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
Vivek Sharma ◽  
Charles Barrett ◽  
De Broughton ◽  
Thomas Obreza

Effective irrigation scheduling enables the irrigator to apply the right amount of water at the right time to meet the crop water demand. This 19-page guide presents information on average daily and weekly crop water use and crop growth stages for twelve north Florida crops that can be used to help schedule irrigation. This will allow a grower to develop a realistic irrigation schedule that minimizes plant water stress, saves water, and reduces nutrient leaching potential. Written by Vivek Sharma, Charles Barrett, De Broughton, and Thomas Obreza, and published by the UF/IFAS Department of Soil and Water Sciences, revised December 2020.


Sign in / Sign up

Export Citation Format

Share Document