Characterization of Physiological Resistance to White Mold and Search for Molecular Markers Linked to Resistance via Advanced Backcross QTL Analysis in an Interspecific Cross between Phaseolus coccineus and P. vulgaris
White mold, caused by Sclerotinia sclerotiorum (Lib.) de Bary, causes major losses in dry and snap bean (Phaseolus vulgaris) production. With little genetic variation for white mold resistance in common bean, other potential sources for resistance must be investigated. Accessions of scarlet runner bean (P. coccineus) have been shown to have partial resistance exceeding any to be found in common bean. Resistance is quantitative with at least six QTL found in a P. coccineus intraspecific resistant × susceptible cross. Our goal is to transfer high levels of resistance from P. coccineus into commercially acceptable common bean lines. We developed interspecific advanced backcross populations for mapping and transfer of resistance QTL. 111 BC2F5 lines from a cross between OR91G and PI255956 have been tested in straw tests and oxalate tests, as well as in a field trial. The data show that the OR91G × PI255956 population carries a high level of resistance, but because of the quantitative nature of resistance, it may be necessary to intercross individuals to achieve higher levels. SSR, RAPD, and AFLP markers are being tested in the population to construct a linkage map for placement of QTL. QTL identified from each type of test (straw, oxalate, and field) may provide additional information about the genetic architecture of white mold resistance. Three other populations are from advanced backcrosses of the recurrent parents G122, OR91G, and MO162, with PI433251B as the donor parent in each. Analyses and advance of these populations will follow, the results of which should confirm QTL identified in the OR91G × PI255956 population, as well as possible additional resistance QTL from PI433251B.