scholarly journals Sweet Corn Growth and Yield Responses to Planting Dates of the North Central United States

HortScience ◽  
2008 ◽  
Vol 43 (6) ◽  
pp. 1775-1779 ◽  
Author(s):  
Martin M. Williams

Sweet corn is planted over a 3-month period in the north central United States to extend availability for fresh market and processing; however, the extent to which development and growth of sweet corn changes during this period is unreported. Field experiments were conducted in 2006 and 2007 to determine the effect of five planting dates, ranging from mid-April to early July, on sweet corn establishment, growth, and yield components. Day length at the time of silking decreased from 15.1 h in the mid-April planting to 13.7 h in the early July planting. Development took 13 to 25 fewer days from emergence to silking for the hybrid ‘BC0805’, an 82-day augmented sugar enhancer endosperm type, as planting was delayed from mid-April to early July. Maximum height generally increased through planting dates with as much as 23% taller plants in early July versus mid-April planted sweet corn. While leaf mass was unaffected by planting date, maximum leaf number and rate of leaf appearance steadily decreased with later planting dates. Lower reproductive and total biomass at silking as well as marketable ear yield components were lowest in the early July planting date and were associated with presence of maize dwarf mosaic virus in leaf samples. In response to environmental conditions, the crop canopy undergoes distinct morphological changes as planting is delayed, and those changes may have implications for crop production.

PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0139188 ◽  
Author(s):  
Laura Aldrich-Wolfe ◽  
Steven Travers ◽  
Berlin D. Nelson

1995 ◽  
Vol 52 (2) ◽  
pp. 416-424 ◽  
Author(s):  
James W. LaBaugh

Algal chlorophyll a is commonly used as a surrogate for algal biomass. Data from three lakes in western Nebraska, five wetlands in north-central North Dakota, and two lakes in north-central Minnesota represented a range in algal biovolume of over four orders of magnitude and a range in chlorophyll a from less than 1 to 380 mg∙m−3. Analysis of these data revealed that there was a linear relation, log10 algal biovolume = 5.99 + 0.09 chlorophyll a (r2 = 0.72), for cases in which median values of chlorophyll a for open-water periods were less than 20 mg∙m−3. There was no linear relation in cases in which median chlorophyll a concentrations were larger than 20 mg∙m−3 for open-water periods, an occurrence found only in shallow prairies lakes and wetlands for years in which light penetration was the least.


2015 ◽  
Vol 107 (4) ◽  
pp. 1401-1410 ◽  
Author(s):  
Yi Wang ◽  
Matthew D. Ruark ◽  
Amanda J. Gevens ◽  
Don T. Caine ◽  
Amanda L. Raster ◽  
...  

2020 ◽  
Vol 112 (4) ◽  
pp. 2928-2943
Author(s):  
Emma G. Matcham ◽  
Spyridon Mourtzinis ◽  
Shawn P. Conley ◽  
Juan I. Rattalino Edreira ◽  
Patricio Grassini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document