scholarly journals Genotypic Variation in the Postharvest Performance and Ethylene Sensitivity of Cut Rose Flowers

HortScience ◽  
2010 ◽  
Vol 45 (5) ◽  
pp. 790-796 ◽  
Author(s):  
Andrew J. Macnish ◽  
Ria T. Leonard ◽  
Ana Maria Borda ◽  
Terril A. Nell

Natural variation in the postharvest quality and longevity of ornamental plants can often be related to differences in their response to ethylene. In the present study, we determined the postharvest performance and ethylene sensitivity of cut flowers from 38 cultivated Hybrid Tea rose genotypes. The vase life of the cultivars varied considerably from 4.5 to 18.8 days at 21 °C. There was also substantial variation in the degree of flower opening among genotypes. Exposure to 1 μL·L−1 ethylene for 24 h at 21 °C reduced the longevity of 27 cultivars by 0.8 to 8.4 days (18% to 47%) by accelerating petal wilting and abscission. Ethylene treatment also significantly reduced rates of flower opening in 17 sensitive cultivars and in six cultivars that showed no ethylene-related reduction in vase life. Five cultivars showed no reduction in vase life or flower opening in response to ethylene exposure. Pre-treating stems with 0.2 mm silver thiosulfate liquid or 0.9 μL·L−1 1-methylcyclopropene (1-MCP) gas for 16 h at 2 °C reduced the deleterious effects of ethylene. The release of 1-MCP from two sachets containing EthylBloc™ into individual shipping boxes also protected flowers against ethylene applied immediately after a 6-d commercial shipment. The duration of protection afforded by the 1-MCP sachet treatment was greatest when flowers were maintained at low temperature.

Author(s):  
Takanori Horibe ◽  
Maho Makita

ABSTRACT Improving the quality and rate of opening of cut flowers is important to meet consumer demand. Thus, it is important to develop methods to control the rate of flower opening and senescence in ornamental plants. In this study, we investigated the effects of 1-naphthaleneacetic acid (NAA) in flower opening in rose (Rosa sp.) cultivars Princess Meg, Red Star and Madrid. Cut roses were maintained under different concentrations of NAA. Shoot bases were immersed in water solution containing 0, 100, and 1,000 μM NAA, in addition to 2% w/v sucrose with 0.02% w/v 8-hydroxyquinoline monohydrate. Subsequently, their vase life, flower opening, flower diameter and petal weight were measured. Flower opening in all three cultivars was clearly promoted by the 1,000 μM NAA treatment, resulting in higher petal fresh weight and flower diameter at 2 days following treatment. 100 μM NAA treatment also promoted flower opening and petal wilting in three cultivars, although the decrease in relative fresh weight of cut rose became slower and vase-life became longer than 1,000 μM NAA treatment in “Madrid”. This indicates that NAA promotes flower opening and petal growth in three cut rose cultivars. However, NAA treatment also promoted petal wilting, resulting in shorter vase-life. Although rose cultivars differed in their sensitivity to the NAA treatment, we conclude that NAA shows high potential as a chemical agent for controlling flower opening in cut rose cultivars.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 995
Author(s):  
Mohammad Darvish ◽  
Habib Shirzad ◽  
Mohammadreza Asghari ◽  
Parviz Noruzi ◽  
Abolfazl Alirezalu ◽  
...  

Ethylene is the most important factor playing roles in senescence and deterioration of harvested crops including cut flowers. Brassinosteroids (BRs), as natural phytohormones, have been reported to differently modulate ethylene production and related senescence processes in different crops. This study was carried out to determine the effects of different levels of 24-epibrassinolide (EBL) on ACC oxidase enzyme activity, the final enzyme in ethylene biosynthesis pathway, vase life, and senescence rate in lisianthus cut flowers. Harvested flowers were treated with EBL (at 0, 3, 6, and 9 µmol/L) and kept at 25 °C for 15 days. The ACC oxidase activity, water absorption, malondialdehyde (MDA) production and vase solution absorption rates, chlorophyll and anthocyanin contents, and the vase life of the flowers were evaluated during and at the end of storage. EBL at 3 µmol/L significantly (p ≤ 0.01) enhanced the flower vase life by decreasing the ACC oxidase activity, MDA production and senescence rates, and enhancing chlorophyll and anthocyanin biosynthesis and accumulation, relative water content, and vase solution absorption rates. By increasing the concentration, EBL negatively affected the flower vase life and postharvest quality probably via enhancing the ACC oxidase enzyme activity and subsequent ethylene production. EBL at 6 and 9 µmol/L and in a concentration dependent manner, enhanced the ACC oxidase activity and MDA production rate and decreased chlorophyll and anthocyanin accumulation and water absorption rate. The results indicate that the effects of brassinosteroids on ethylene production and physiology of lisianthus cut flowers is highly dose dependent.


2018 ◽  
Vol 48 (12) ◽  
Author(s):  
Kathia Fernandes Lopes Pivetta ◽  
Claudia Fabrino Machado Mattiuz ◽  
Regina Ferreira de Melo ◽  
Renata Gimenes ◽  
Gustavo de Nobrega Romani ◽  
...  

ABSTRACT: Aster (Aster ericoides L.) is a flower crop of North American origin, which belongs to the family Asteraceae. This plant presents capitulum-type inflorescences, widely used as cut flowers. In Brazil, it has been grown only recently, but still has a high expansion potential. In floriculture, pulsing and conditioning solutions are often used to extend the vase life of cut flowers. The present study aimed to evaluate the influence of silver thiosulphate (STS) pulsing and sucrose solutions on the postharvest life of A. ericoides stems. The experiment was carried out under a complete randomized design with treatments arranged in a 2x5 factorial scheme. Treatments consisted of flower stems treated with STS pulsing for 30 minutes, combined with four sucrose concentrations (5, 10, 15, and 20%) for six hours, plus a control (without treatment). Each plot contained four replicates of 10 stems, totalizing 400 stems. The following variables were daily: vase life, fresh mass, and relative water content (RWC). For pulsing data, means were compared by the Tukey’s test (p≥5%). Yet for sucrose concentrations, means were submitted to a polynomial regression to verify the behavior of variables as a function of concentrations increases. Likewise, each treatment was evaluated for fresh mass and RWC variations over time by a polynomial regression. Results indicated no effect of STS pulsing (2mM) on the vase-life length of aster stems. In contrast, the sucrose solution at 10% extended the vase life of stems by two days, decreased fresh mass loss, and helped maintain water balance in stems.


2012 ◽  
pp. 423-428 ◽  
Author(s):  
E. Danaee ◽  
V. Abdossi ◽  
Y. Mostofi ◽  
P. Moradi

2020 ◽  
Vol 17 (4) ◽  
pp. 673-688
Author(s):  
Tran Lap Xuan ◽  
Le Ba Le ◽  
Le Thi Anh Tu

A biological method for synthesizing silver nanoparticles (SNPs) using the leaf extracts of Arachis pintoi Krapov. & W.C. Greg. was developed.  The optimum conditions of input materials were found with leaf autoclaving in 15 min, 20 g fresh leave, and 4 mM of silver nitrate (AgNO3). To study the role of time, temperature, and solution pH of the reaction, varying time reaction (5, 30, 60, 90, 120, 150, and 180 min), temperature reaction (10, 20, 30, 40, and 50oC) and pH of the solution (1, 3, 5, 7, 9, and 11) were investigated. The optimal biosynthesis conditions were achieved in 180 min of reaction time at 50oC and pH 11. The obtained nanoparticles have spherical and oblong in shape with average size of 26.4 nm. The SNPs in 4 concentrationss (5, 15, 25, and 35 ppm) combined with and without 2% sucrose extended vase life, enlarged flower diameter, and maintained increase the relative fresh weight with vase solution uptake rate. SNPs inhibited significantly the bacterial growth in the stem end and vase solution, reduced the blockage in stems and therefore promoted the postharvest quality of carnation cut flowers. Out of the treatments, administration of 5 ppm SNPs with 2% sucrose of vase solution gave the best results for all parameters. The biosynthesis SNPs could be applied as a promising preservative solution for carnation cut flowers.


2004 ◽  
Vol 10 (4) ◽  
Author(s):  
F. Hassan ◽  
G. Schmidt ◽  
Y. M. Hafez ◽  
M. Pogány ◽  
J. Ankush

The effect of STS and 1-MCP on the postharvest quality of carnation and rose cut flowers was studied. Cut flowers of Dianthus c..aryophyllus L. cv. Asso and Rosa hybritia cv. Baroness were treated with silver thiosulfate (STS) at 0.4 mM with sucrose at 50 g 1-t and 1-methylcyclopropene ( I -MCP) at 0.5 g m-3 for 611. Pretreatment with STS and 1-MCP significantly extended the vase life and minimized the % loss of initial weight of carnation and rose cut flowers comparing to the untreated control. The two chemicals applied inhibited the chlorophyll degradation and carbohydrate loss and hence, significantly improved the postharvest quality of carnation and rose cut flowers comparing to the control. Ethylene production by cut flowers was inhibited as a result of using these chemicals. In general, there were no differences between STS and (-MCP but the later does not have the heavy metal implications of STS treatment, and hence, using 1-MCP pretreatment for extending the vase life of carnation and rose cut flowers was recommended.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 415
Author(s):  
Toan Khac Nguyen ◽  
Jin Hee Lim

Cut flowers have become an export income in the global floriculture market. They have multiple uses, such as for home beautification, in ceremonies (including weddings and funerals), and as symbols of love, appreciation, respect, etc., in humane society. Each type of cut flower has a different vase life and the longevity of their freshness is linked to preharvest, harvest, and postharvest tools and conditions. The postharvest quality and vase life must be considered in order to obtain the desirable qualities of cut flowers, and factors that affect this are important in the floral industry. The use of floral preservative solutions is good practice for prolonging the vase life of cut flowers. Currently, the eco-friendly solutions, which are used as floral preservatives for extending cut flower vase life, have been discovered to be a low-cost and organic alternative as compared to chemical solutions. However, there are certain problems associated with the use of chemical and eco-friendly solutions. In this review, we summarize several potential approaches to improve flower vase life and discuss the best choices for holding-preservative-solution practices.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 617c-617
Author(s):  
Rik van Gorsel ◽  
A. Verlind ◽  
A. van de Wiel ◽  
G. van Leeuwen

Low root zone temperatures in summer stimulate generative development of Alstroemeria, resulting in a higher flower production in winter. The effects of greenhouse soil and air temperatures on vase life and ornamental value were evaluated. Preharvest treatments were two locations (field stations), four air temperatures (9, 12, 15, 18C), four root zone temperatures (11, 14, 17C, uncontrolled) and three varieties ('Flamengo', 'Jubilee', 'Wilhelmina') in a factorial design. The flowers were placed in a commercial pretreatment solution for 24 hours immediately after harvest. After a two day transport simulation and rehydration for 3 hours at 5C, flowers were kept at 1.5 W.m-2 PAR (12hr/day), 20C and 60% RH. The experiment was done three times. Results from the first harvest showed that lowering the soil temperature increased the number of stems that had two whirls of flowers opening after harvest. Average vase life was two weeks. Low air temperatures increased whirl opening as well, and increased vase life by one or two days. Ornamental value and number of flower branches per stem were not affected.


Sign in / Sign up

Export Citation Format

Share Document