scholarly journals Effects of Phosphorus on Shoot and Root Growth, Partitioning, and Phosphorus Utilization Efficiency in Lantana

HortScience ◽  
2016 ◽  
Vol 51 (8) ◽  
pp. 1001-1009 ◽  
Author(s):  
Hye-Ji Kim ◽  
Xinxin Li

This study was undertaken to critically analyze the effects of reduced phosphorus (P) on shoot and root growth, partitioning, and phosphorus utilization efficiency (PUtE) in lantana (Lantana camara ‘New Gold’). Plants were grown in a 1:1 mixture of perlite and vermiculite with complete nutrient solutions containing a range of P concentrations considered to be deficient (1 mg·L−1), low (3 and 5 mg·L−1), adequate (10 mg·L−1), and high (20 and 30 mg·L−1). Higher P supply had most dramatic effect on increasing the number of leaves and leaf surface area, subsequently leading to a disproportionate increase in shoot biomass than root biomass. Increasing P from 1 to 30 mg·L−1 linearly (P < 0.0001) increased shoot dry weight (DW) during vegetative growth, and logarithmically (P < 0.0001) during reproductive growth. Regardless of plant growth stage, biomass of roots and flowers (inflorescences) logarithmically increased (P < 0.0001) with increasing P concentrations. Plants grown with lower P allocated more biomass to roots than shoots, resulting in a higher root-to-shoot ratio. Increasing P concentration to 20 mg·L−1 increased the accumulation of P in all plant parts, but predominantly in shoots, whereas further increasing the concentration increased the accumulation primarily in roots and flowers. Higher P accumulation in plant tissues did not strongly contribute to the biomass production. Phosphorus utilization efficiency was higher with lower P supply in all plant tissues. P-deficient roots had the highest PUtE and specific root length (SRL), and retained higher proportion of P compared with nondeficient roots. Our results indicate that P concentration at 20 mg·L−1 is sufficient to maintain optimal vegetative growth while reproductive growth does not require P concentrations over 10 mg·L−1 as it stimulates greater level of P accumulation in plant parts with little or no effect on growth and flowering, and biomass accumulation in lantana.

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 611
Author(s):  
Abdessamad Fakhech ◽  
Martin Jemo ◽  
Najat Manaut ◽  
Lahcen Ouahmane ◽  
Mohamed Hafidi

The impact of salt stress on the growth and phosphorus utilization efficiency (PUE) of two leguminous species: Retama monosperma and Acacia gummifera was studied. The effectiveness of arbuscular mycorrhizal fungi (AMF) to mitigate salt stress was furthermore assessed. Growth, N and P tissue concentrations, mycorrhizal root colonization frequency and intensity, and P utilization efficiency (PUE) in the absence or presence of AMF were evaluated under no salt (0 mM L−1) and three salt (NaCl) concentrations of (25, 50 and 100 mM L−1) using a natural sterilized soil. A significant difference in mycorrhizal colonization intensity, root-to-shoot ratio, P uptake, PUE, and N uptake was observed between the legume species. Salt stress inhibited the shoot and root growth, and reduced P and N uptake by the legume species. Mycorrhizal inoculation aided to mitigate the effects of salt stress with an average increase of shoot and root growth responses by 35% and 32% in the inoculated than in the non-inoculated A. gummifera treatments. The average shoot and root growth responses were 37% and 45% higher in the inoculated compared to the non-inoculated treatments of R. monosperma. Average mycorrhizal shoot and root P uptake responses were 66% and 68% under A. gummifera, and 40% and 95% under R. monosperma, respectively. Mycorrhizal inoculated treatments consistently maintained lower PUE in the roots. The results provide insights for further investigations on the AMF conferred mechanisms to salt stress tolerance response by A. gummifera and R. monosperma, to enable the development of effective technologies for sustainable afforestation and reforestation programs in the Atlantic coast of Morocco.


1992 ◽  
Vol 28 (3) ◽  
pp. 255-263 ◽  
Author(s):  
Mrinal K. Chowdhury ◽  
Elpidio L. Rosario

SummaryThe effects of component population, rhizobial inoculation and applied nitrogen on the efficiency of phosphorus utilization in maize/mungbean intercropping were examined in two experiments. The efficiency of phosphorus absorption decreased by between 5 and 43% in maize and by between 31 and 58% in mungbean as a result of intercropping. The overall efficiency of phosphorus absorption in intercropping decreased with increasing nitrogen level but a parallel increase in overall conversion efficiency maintained a constant and large land equivalent ratio (LER) up to the highest level of nitrogen. The increase in LER over unity, however, was due primarily to the greater total absorption of phosphorus by maize and mungbean together in intercropping compared with that when they were grown in pure stands.


Sign in / Sign up

Export Citation Format

Share Document