scholarly journals Early Performance of Jujube Drying and Multipurpose Cultivars in the Southwestern United States

HortScience ◽  
2020 ◽  
Vol 55 (11) ◽  
pp. 1804-1810
Author(s):  
Shengrui Yao ◽  
Robert Heyduck ◽  
Steven Guldan ◽  
Govinda Sapkota

Jujube cultivars have been imported into the United States for more than 100 years, but cultivar trials have been limited. To accurately recommend cultivars for each region, trials have to be conducted. We have set up jujube cultivar trials at the New Mexico State University (NMSU) Alcalde (2015, USDA hardiness zone 6a), Los Lunas (2015, 7a), and Leyendecker (2017, 8a) Centers with over 35 cultivars at each site with two replicates and a complete random block design. We reported the early performance of fresh-eating cultivars in 2019. Here we report the performance of 19 drying and multipurpose jujube cultivars. Between 40% and 100% of jujube trees produced a few fruit to more than 100 fruit in the planting year, depending on cultivar and location. Trees were more upright at Los Lunas than at Alcalde. ‘Kongfucui’ (KFC) was the most productive cultivar at Alcalde with 13.3 kg/tree in 2019, followed by ‘Chaoyang’, ‘Jinkuiwang’ (JKW), ‘Pitless’, and ‘Lang’. The yield at Los Lunas was lower than Alcalde for the first 3 years after planting; however, ‘Jinsi 2’, ‘Jinsi 4’, ‘Jixin’, ‘Sherwood’, ‘Sihong’, and ‘Xiangzao’ produced higher yields at Los Lunas than Alcalde in 2019. All cultivars produced higher yields and contained higher soluble solids at Leyendecker than Alcalde and Los Lunas at similar ages. ‘JKW’ was the most vigorous and productive cultivar at Leyendecker. ‘JKW’, ‘Xiangzao’, and ‘Lang’ produced more than 3.0 kg/tree in their second year after planting. ‘JKW’ yielded 12.3 kg/tree in its third year after planting. Among the three locations, drying cultivars are not recommended for commercial production at Alcalde. However, home gardeners can plant multipurpose and early-drying cultivars at Alcalde. Leyendecker produced the best dry fruit with larger fruit size, rich color, and meaty fruit; dry fruit quality was acceptable in most years at Los Lunas except 2019. We preliminarily recommend some drying and multipurpose cultivars for each location. As trees mature and produce more fruit, we will fine-tune the cultivar recommendations. We also discuss the jujube cultivar zoning information in New Mexico and fruit uses.

2006 ◽  
Vol 28 (3) ◽  
pp. 28-33
Author(s):  
Christine Eber ◽  
Megan Snedden ◽  
Meghann Dallin

In this paper we discuss how we arrived on three separate paths toward women-centered forms of organizing. We work with women's cooperative groups in rural communities of New Mexico, Chiapas, Mexico, and Cameroon, Africa. Our discussions began when Megan Snedden and Meghann Dallin took classes with Christine Eber at New Mexico State University in Las Cruces and participated in solidarity efforts with Chiapas cooperatives. After graduation, Megan went on to work locally and Meghann went to Cameroon.


HortScience ◽  
2019 ◽  
Vol 54 (11) ◽  
pp. 1941-1946
Author(s):  
Shengrui Yao ◽  
Robert Heyduck ◽  
Steven Guldan

Jujube (Ziziphus jujuba Mill.), also called chinese date, cultivars have not been formally trialed in the United States after the 1950s. Currently, there are five to six commercially available jujube cultivars, with ‘Li’ as the dominant one. Both growers and consumers demand a wider range of cultivars to extend the maturation season and for different uses. We tested jujube cultivars at three locations in New Mexico [U.S. Department of Agriculture (USDA) hardiness zones 6a, 7a, and 8a] to assess their adaption and performance. These are early performance results for fresh eating cultivars. Jujubes were precocious; 50% to 95% of trees produced during their planting year, depending on cultivar and location. The average yield per tree for trees in their second to fourth year after planting were 409 g, 4795 g, and 5318 g at Alcalde; and 456 g, 3098 g, and 5926 g at Los Lunas, respectively. The yields varied by cultivar and location. ‘Kongfucui’ (‘KFC’) was the most productive cultivar at Alcalde and Los Lunas in both 2017 and 2018, followed by ‘Daguazao’, ‘Gaga’, ‘Honeyjar’, Maya’, ‘Redland’, and ‘Sugarcane’. ‘GA866’, ‘Alcalde #1’, ‘Zaocuiwang’, and ‘Sandia’ had the lowest yields among the 15 cultivars tested. ‘Alcalde #1’ was the earliest to mature with large fruit, suitable for marginal regions with short growing seasons, whereas ‘Sandia’ had the best fruit quality among all cultivars tested, suitable for commercial growers and home gardeners. ‘Maya’, ‘Gaga’, ‘Honeyjar’, and ‘Russian 2’ were very productive, early-midseason cultivars with small fruit but excellent fruit quality—a perfect fit for the home gardener market. ‘Li’, ‘Daguazao’, ‘Redland’, and ‘Shanxi Li’ were productive with large fruit. Cultivars grew faster and produced higher yields, larger fruit, and higher soluble solids at more southerly locations. This article discusses cultivars’ early performance up to the fourth year after planting. This is the first jujube cultivar trial report in the United States since the 1950s.


1993 ◽  
Vol 73 (3) ◽  
pp. 847-855 ◽  
Author(s):  
H. A. Quamme ◽  
R. T. Brownlee

Early performance (6–8 yr) of Macspur McIntosh, Golden Delicious, and Spartan apple (Malus domestica Borkh.); Fairhaven peach [Prunus persica (L.) Batsch.]; Montmorency sour cherry (P. cerasus L.); and Lambert sweet cherry (P. avium L.) trees, tissue cultured (TC) on their own roots, was compared with that of the same cultivars budded on commercially used rootstocks. TC trees of all apple cultivars were similar in size to trees budded on Antonovka seedling or M.4 and exceeded the size of trees budded on M.26. They were delayed in flowering and in cropping compared with trees budded on M.26 and M.4. No difference in titratable acidity, soluble solids, flesh firmness, weight, flavor, and color between fruit from TC trees and from trees on M.4 and Antonovka seedlings was detected in 1 yr of measurement. However, fruit from TC Golden Delicious was more russeted and fruit from TC Spartan had more soluble solids. The difference in fruit appearance between TC and budded trees may result from a root-stock effect or a difference in budwood source, because Spartan fruit from trees on M.4 was more russeted than Spartan fruit from TC trees, but was not different from Spartan fruit from trees on Antonovka seedling. Trees of Macspur McIntosh on TC M.26 and on stool-layered M.26 were similar in size and yield efficiency. TC Fairhaven was larger in size than Fairhaven on Siberian C seedling, but was less yield efficient. No difference in fruit size, flesh firmness, or color was detected between fruit harvested from peach trees on the different roots. Montmorency and Lambert TC and on F12/1 were similar in tree size, respectively, but Montmorency and Lambert TC were more yield efficient than on F12/1. Fruit of TC Lambert was lighter in color and had higher titratable acidity than that of Lambert on F12/1, perhaps a result of earlier fruit maturity. Key words: Apple, peach, sweet cherry, sour cherry, self-rooted, rootstocks


Author(s):  
Teresita Majewski ◽  
Lauren E. Jelinek

The archaeology of the territorial and early statehood periods (1850–1917) in the American Southwest was virtually terra incognita until the advent of government-mandated archaeology in the 1960s. Subsequent work has shown that historical archaeology has much to contribute to a fuller understanding of this dynamic and formative time in U.S. history. Historical-archaeological investigations have demonstrated that although the United States formally exerted control over Arizona, Colorado, and New Mexico by the last half of the nineteenth century, the interactions among its Indigenous, Spanish, and Mexican inhabitants strongly influenced the territory’s historical trajectory into the nineteenth and early twentieth centuries. This chapter provides a historic context and a selective overview of archaeological studies that relate to the key themes of shifting economies and cultural heterogeneity.


HortScience ◽  
2018 ◽  
Vol 53 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Shengrui Yao

Jujube (Ziziphus jujuba Mill.) originated in China and grows well in a wide range of areas in the United States, especially the southwest. New Mexico State University’s Sustainable Agriculture Science Center has imported and collected over 50 jujube cultivars and conducted a series of jujube-related research projects. In this study, jujube phenology and pollen germination in New Mexico were investigated and two unique germplasm resources were reported. Jujubes leafed out 4–8 weeks later than most pome and stone fruits and bloomed 2–3 months later than apricots, peaches, and apples. It can avoid late frosts in most years in northern New Mexico and, thus, produce a crop more reliably than traditional fruit crops in the region. For the 48 cultivars tested for pollen germination, the germination rates ranged from 0% to 75% depending on the cultivar and year. ‘September Late’ had the highest pollen germination rate each year among all cultivars tested from 2012 to 2014, whereas ‘GA866’, ‘Maya’, and ‘Sherwood’ had the lowest. ‘Zaocuiwang’ was the first reported male-sterile jujube cultivar in the United States, and this character was consistent from year to year and, thus, it would be a valuable cultivar for jujube breeding. Cultivar Yu had pseudo-flowers which never bloomed or set fruit. It would be a useful germplasm as special landscape trees or for genomic study of jujube flowering-related genes.


Sign in / Sign up

Export Citation Format

Share Document