scholarly journals Improving Snapdragon Cut Flower Production through High Tunnel Season Extension, Transplant Timing, and Cultivar Selection

HortScience ◽  
2021 ◽  
Vol 56 (10) ◽  
pp. 1206-1212
Author(s):  
Maegen Lewis ◽  
Melanie Stock ◽  
Brent Black ◽  
Dan Drost ◽  
Xin Dai

The demand for locally grown, specialty cut flowers is increasing and now includes nontraditional regions for production, such as the U.S. Intermountain West. The objective of this study was to evaluate snapdragon (Antirrhinum majus L.) as a cool season, cut flower crop in northern Utah, where the high elevation and semiarid climate result in a short growing season with strong daily temperature fluctuations. High tunnel and field production methods were trialed in North Logan, UT (41.77°N, 111.81°W, 1382 m elevation) with cultivars ‘Chantilly’, ‘Potomac’, and ‘Rocket’ in 2018 and 2019. Each year, five to six transplant timings at 3-week intervals were tested, beginning in early February in high tunnels and ending in late May in an unprotected field. Stems were harvested and graded according to quality and stem length. High tunnels advanced production by 5 to 8 weeks, whereas field harvests continued beyond the high tunnel harvests by 2 to 8 weeks. High tunnels yielded 103 to 110 total stems per m2 (65% to 89% marketability), whereas field yields were 111 to 162 total stems per m2 (34% to 58% marketability). Overall, production was the greatest with March transplant timings in the high tunnels and mid-April transplant timings in the field. ‘Chantilly’ consistently bloomed the earliest on 4 and 6 May each year, ‘Potomac’ had the highest percentage of long stem lengths, and ‘Rocket’ extended marketable stem production through July in high tunnels. Selecting optimal transplant dates in the high tunnel and field based on cultivar bloom timing maximizes marketable yields and results in a harvest window lasting 4.5 months.

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1067D-1067
Author(s):  
H. Chris Wien

Flowering plants grown and marketed locally as cut flowers have become economically important in recent years, concentrating on species that are too delicate to ship long distances. Although the bulk of this production is done outdoors, extending the season at both ends by using high tunnels (unheated greenhouse structures covered with a single layer of polyethylene), has become popular. To determine the advantages and drawbacks of using high tunnels as season extension structures for cut flowers, variety trials of seven and four flower species were conducted in 2004 and 2005, respectively, both in a high tunnel and in an adjacent field. In the cool, rainy 2004 season, plants in the tunnel were ready for harvest 20 days sooner than the same varieties outside. Outside plants had 25% more stems than tunnel-grown plants, but there was no difference in average stem length. In the dry, warm season of 2005, tunnel-grown plants were 8 days earlier, and had 58% more stems, which were increased in length by 16% over field-grown plants. Lisianthus (Eustoma grandiflorum) and snapdragons (Antirrhinum) were grown in both seasons, and gave similar results both times. Tunnel-grown lisianthus showed a 34% increase in stems per plant, and an 8% increase in stem length, and the stems could be harvested 8 days earlier. Snapdragons were 9 days earlier in the tunnel both years, but tunnel-grown plants produced 22% fewer stems. Disease and insect pressures occurred in both locations, but pest species causing problems differed. With careful choice of species to be grown in tunnels, cut flower production in this environment can be optimized.


2018 ◽  
Vol 28 (6) ◽  
pp. 855-862
Author(s):  
Suzanne O’Connell

The potential to expand the production of ornamental kale (Brassica oleracea var. acephala) grown as a specialty cut flower in the southeastern United States appears promising, especially for the winter holidays. This 2-year replicated study investigated the effects of two fall plantings and three cultivars on ornamental kale yields grown under organic high tunnels. In addition to the production study, informal interviews of local florists were conducted. The earlier planting dates resulted in longer stem lengths (≥5 cm) and fewer days to harvest (≥5 days) across both seasons. Commercial stem length goals were not achieved (≥60 cm) but local florists did not appear to have the same standards (≥31 cm). The cultivars Crane Bicolor and Lucir White had longer stems and larger heads than Crane Red. Our high tunnel system provided favorable air temperatures for vegetative growth from late September through early November indicating an earlier planting date may be possible. Commonly accepted nighttime temperatures required to induce color changes occurred in early to mid-November during our study period.


2009 ◽  
Vol 19 (1) ◽  
pp. 56-60 ◽  
Author(s):  
H. Chris Wien

High tunnels are well suited for use in the production of floral crops, especially cut flowers. Through the increases in temperature afforded at both ends of the growing season, high tunnels allow earlier and later harvests than are possible in the field. During summer, rain protection and a relatively calm environment provides an ideal growing environment to cut flower crops. In U.S. Department of Agriculture (USDA) Hardiness Zones 3 through 5, the higher temperatures of a high tunnel permit culture of warm-season crops like celosia (Celosia argentea) during summer. Cut flower production allows intensive production on a small land area and provides a high level of income. For these reasons, high tunnels have become a standard part of cut flower growers' farms. Most commonly, they are single-bay structures with roll-up sides, but use of multi-bay complexes is becoming more popular for larger-scale growers. In USDA Hardiness Zones of 7 and higher, high tunnels are shaded in summer to lower interior temperatures and enhance production of shade-tolerant species. Overall, techniques of moderating temperature extremes with shading and ventilation, or use of low tunnels inside to increase minimum temperatures are important options for cut flower production. In the presentation, comparisons will be made in growth and earliness of production and yield for several cut flower species grown in the field and an adjacent high tunnel.


2021 ◽  
pp. 1-10
Author(s):  
Samantha R. Nobes ◽  
Karen L. Panter ◽  
Randa Jabbour

The objective of this study was to determine best production practices for five different specialty cut flower species at an altitude of 7200 ft. Region-specific information about cut flower production is important because of unique environmental conditions. We grew five specialty cut flower species in two different growing environments: a greenhouse and a high tunnel. Flowers were grown year-round in the greenhouse and during late spring through fall in the high tunnels. We also used pinching as another production method for the potential increase in branching. The goals were to test the effects of species, growing environment, and pinching on the days from sowing to harvest, stem length, number of stems cut per plant, and marketable yield. Experiments were conducted at the University of Wyoming Laramie Research and Extension Center in Laramie, WY, to assess the potential for producing specialty cut flowers for local consumption. The species used in this study included ‘Princess Golden’ pot marigold (Calendula officinalis), ‘Lucinda Mix’ stock (Matthiola incana), ‘Double Mix’ strawflower (Helichrysum bracteatum), ‘Dara’ ornamental carrot (Daucus carota), and ‘Celway Mix’ cockscomb (Celosia argentea). Results showed significant species × environment and season interactions, indicating the importance of species and production practice selections. We successfully sold the cut flowers to the university student farm for community-supported agriculture shares and farm market sales, as well as to a local florist for use in floral arrangements. This study concluded that careful species selection for season and growing environment is essential for the successful integration of these niche cut flowers into current or future greenhouse and high-tunnel production in Wyoming.


HortScience ◽  
2010 ◽  
Vol 45 (10) ◽  
pp. 1464-1469 ◽  
Author(s):  
Daniel Rowley ◽  
Brent L. Black ◽  
Dan Drost ◽  
Dillon Feuz

High tunnels have been used successfully in many areas of the world to extend the growing season for numerous crops. However, very little research has been conducted to evaluate the season extension benefits offered by high tunnels for small fruit crops in high-elevation growing areas such as the Intermountain West region of the United States. The use of high tunnels was investigated in North Logan, UT (lat. 41.766 N, elev. 1405 m, 119 freeze-free days) to extend the growing season for June-bearing strawberries. Growing systems included a fall-planted annual hill system and vertical growing systems in two different orientations. Optimum planting date for each system was determined by transplanting ‘Chandler’ plugs at 2-week intervals over 10 weeks. For the second year of the study, a field planting was also included. Over two seasons, the optimum planting dates were approximately the first week of September. The vertical systems were more susceptible to winter injury likely resulting from the temperature extremes in the root zone. Where winter injury was prevented, the vertical systems had higher yields per tunnel area than the in-ground system, but yield increases did not compensate for higher construction and management costs. The production window for the in-ground high tunnel planting was ≈4 weeks earlier than the field-grown plants and increased profitability by $13/m2 of tunnel area.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 659d-659
Author(s):  
Gloria McIntosh ◽  
Gerald Klingaman

Several cut flower species were studied to determine their feasibility for cut flower production. Three fertilizer treatments (0.5, .1, and .15kg/m2 respectively) were used and their effect on number of stems, stem length and fresh weight were determined. Celosia cristata and Ageratum houstonianum `Blue Horizon' proved to respond best to fertilizer treatments. Celosia fertilized at a rate of .15kg/m2 will produce approximately 200 stems/m2. Ageratum will produce appoximately 400 stems/m2 when fertilized at a rate of .10kg/m2. Fertlizer rates of .10 and .15 kg/m2 for Eustoma culture yielded 86 stems/m2, which was lower than other species used in this test. Extended vase life and consumer response could possibly justify using this species in cut flower production. An economic break-even analysis will be presented to show what price will have to be received per stem to cover costs.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 750B-750
Author(s):  
Lewis Jett* ◽  
Edward Carey ◽  
Laurie Hodges

There is great interest by horticulture producers in the Central Great Plains in methods to extend the traditional growing season, increase value of crops and provide more locally grown produce. High tunnels are low-cost, unheated greenhouses that can accomplish these goals. In 2002, the Central Great Plains High Tunnel Project was initiated through funding support by the Initiative for Future Agriculture and Food Systems (IFAFS). The Univ. of Missouri, Kansas State Univ., and the Univ. of Nebraska have constructed 24 high tunnels to conduct research on vegetables, small fruits and cut flowers. Each year, a multi-state workshop is conducted along with several on-farm and research center tours. Growers are collaborating with extension personnel on projects ranging from high tunnel temperature management to pest management. A web site for high tunnel information has been constructed (www.hightunnels.org). Production guides on specific high tunnel crops have been printed. From 2002-03, a significant number of high tunnels have been constructed in the Central Great Plains.


2011 ◽  
Vol 46 (2) ◽  
pp. 161-166 ◽  
Author(s):  
Adriane Marinho de Assis ◽  
Lilian Keiko Unemoto ◽  
Ricardo Tadeu de Faria ◽  
Deonísio Destro ◽  
Lúcia Sadayo Assari Takahashi ◽  
...  

The objective of this work was to evaluate the adaptation of anthurium (Anthurium andraeanum) cultivars as cut flowers in a subtropical area, located in north of Paraná State, Brazil. The Apalai, Ianomami, Kinã, nK 102, Parakanã, Rubi, and Terena cultivars were cultivated in a nursery under 80% shade. The number of leaves and inflorescences, floral stem length, length and width of inflorescences, and spadix length were evaluated. The experimental design was in completely randomized blocks, with six replicates and five plants per plot. During the 18 months evaluated, 'Parakanã' produced 11 inflorescences per plant, whereas the other cultivars produced seven to nine inflorescences per plant. The number of leaves produced per plant was: 'Ianomami', 25; 'Parakanã', 20; 'Apalai' and 'Terena', 15; 'Kinã' and 'Rubi', 11; and 'nK 102', 9. The Apalai, nK 102, Parakanã, and Rubi cultivars are the most recommended as cut flowers; the Ianomami cultivar is not recommended as a cut flower in this region.


HortScience ◽  
2015 ◽  
Vol 50 (3) ◽  
pp. 395-401 ◽  
Author(s):  
Tiffany L. Maughan ◽  
Kynda R. Curtis ◽  
Brent L. Black ◽  
Daniel T. Drost

Strawberry production in the U.S. Intermountain West is limited by harsh climatic conditions and competition from domestic producers and imports. Using season extension methods to combat climatic conditions may be effective but generally increases production costs. This study evaluates the economic returns to implementing high tunnels, low tunnels, and in-ground supplemental heating to strawberry production (Seascape and Chandler cultivars) in northern Utah. The high tunnel provided a net return of $1,943.57 or $15,548.56 per hectare assuming eight high tunnels per hectare. The addition of low tunnels within the high tunnel led to a positive increase in net returns for ‘Seascape’ but not for ‘Chandler’ production. Supplemental in-ground heating increased net returns by up to 50% for both cultivars, primarily as a result of higher pre-season yield and market pricing. Study results find that season extension technologies can successfully increase net returns to strawberry production through early and increased yields, when strawberries are sold primarily through local direct markets.


HortScience ◽  
2012 ◽  
Vol 47 (9) ◽  
pp. 1283-1290 ◽  
Author(s):  
Suzanne O’Connell ◽  
Cary Rivard ◽  
Mary M. Peet ◽  
Chris Harlow ◽  
Frank Louws

Organic and heirloom tomatoes are high-value products with growing demand but there are many challenges to successful cultivation. A systems comparison study was carried out to evaluate the production of the popular heirloom tomato ‘Cherokee Purple’ (Solanum lycopersicum L.) under high tunnel and open field systems in North Carolina from 2007 to 2008. Management of the high tunnel (i.e., temperature and irrigation), weather events as well as pest and disease pressure influenced crop quality and yield. The high tunnel and field systems achieved similar total yields (100 t·ha−1) the first season but yields were 33% greater in the high tunnel system than the field system in the second year (100 t·ha−1 and 67 t·ha−1, respectively). Both years, the tomatoes were planted in high tunnels 1 month earlier and harvested 3 weeks earlier than the field. The accumulation of ≈1100 growing degree-days (GDD) was required in both systems before 50% of the fruit was harvested. Fruit cracking, cat-facing, blossom-end rot, and insect damage were the major categories of defects in both systems. Incidence of both Tomato Spotted Wilt Virus (TSWV) and Gray Leaf Spot (GLS) were lower in the high tunnel compared with the field in 2007 and 2008, respectively. Results of this study suggest that with proper management techniques, high tunnels can optimize yields, increase fruit quality, and provide season extension opportunities for high-value horticultural crops.


Sign in / Sign up

Export Citation Format

Share Document