scholarly journals Genetic Analysis of Advanced Populations in Antirrhinum majus L. with Special Reference to Cut Flower Postharvest Longevity

2005 ◽  
Vol 130 (3) ◽  
pp. 434-441 ◽  
Author(s):  
William J. Martin ◽  
Dennis P. Stimart

Narrow-sense heritabilities and genetic correlations of ornamental quality traits of Antirrhinum majus (snapdragon) were evaluated with special reference to cut flower postharvest longevity (PHL). Inbreds P1 (16 days PHL) and P2 (3 days PHL) were hybridized to produce an F1 (P1 × P2) that was self-pollinated to produce an F2 population. The F2 were self-pollinated to produce F3 families and advanced through single-seed descent by self-pollination to the F5 generation. P1, P2, F1, F3, F4, and F5 were evaluated for ornamental quality traits. Quality traits were found to be quantitative and normally distributed. Narrow-sense heritability (h2) estimates were high and consistent across generations examined; PHL h2 ranged from 0.79 to 0.81 ± 0.06. Phenotypic and genotypic correlations revealed underlying physiological and pleiotropic interactions relevant to breeding programs aimed at simultaneous improvement of ornamental quality traits. PHL is inversely related to cut flower strength and days to flower, -0.44 ± 0.04 and -0.43 ± 0.44. Buds at discard is positively correlated to cut flower and plant diameter, cut flower weight and days to flower, 0.77 ± 0.05, 0.58 ± 0.06, 0.71 ± 0.06, and 0.77 ± 0.07, respectively. Gain from selection for quality traits of interest can be rapid.

2005 ◽  
Vol 130 (5) ◽  
pp. 694-699 ◽  
Author(s):  
Jaime A. Weber ◽  
William J. Martin ◽  
Dennis P. Stimart

Progeny of 158 F5 × F5 crosses of Antirrhinum majus (snapdragon) selected within and among cut flower postharvest longevity (PHL) categories (long = 12.6-16.8 days, middle = 9.3-12.1 days, and short = 4.8-8.9 days) were evaluated for PHL and quality traits. Results were compared with previous studies involving F2 × F2 progeny, and F3, F4, and F5 inbred lines. Heritability of PHL in F5 × F5 progeny (0.77 ± 0.11) agrees with that of inbred lines (0.79 to 0.81) but is higher than in F2 × F2 progeny (0.41). Therefore, selection for increased PHL should progress more rapidly and predictably through application of inbred lines rather than F2 individuals. Significant differences between F5 × F5 progeny PHL categories confirm PHL is heritable with a significant additive component. Heritabilities of quality traits in A. majus are high, suggesting selection for quality traits should progress without difficulty. Phenotypic and genotypic correlations of PHL with quality traits are not consistently significant across PHL studies in A. majus. Discrepancies between studies suggest most traits may not be correlated to PHL or are subject to strong environmental influence.


HortScience ◽  
1990 ◽  
Vol 25 (11) ◽  
pp. 1357F-1358
Author(s):  
Yiran Yu ◽  
James Harding ◽  
Thomas Byrne

Genetic components of variance and heritability of flowering time were estimated for five generations of the Davis Populationof Gerbera hybrids, Composite, Estimates of narrow-sense heritability averaged 0.50 and broad-sense heritability averaged 0.77 using the NCII design. Narrow-sense heritability was also estimated with two models of parent-offspring regression, resulting in average heritability of 0.49 and 0.51. Estimates of components of variance indicated that the major genetic effect controlling flowering time is additive. However, the dominance component accounted for 28% of the total variance; the environmental component was only 23%. Flowering time is negatively correlated with cut-flower yield. The phenotypic coefficient was –0.34; genetic correlations were –0.47 when estimated from the NCII design, and –0.72 when estimated from the parent-off-spring method. A practical model was constructed to assess the efficiency of indirect selection for cut-flower yield using flowering time as a marker trait. The advantages of indirect selection accruing from increased population size and reduced generation time are discussed.


HortScience ◽  
1990 ◽  
Vol 25 (11) ◽  
pp. 1357f-1358
Author(s):  
Yiran Yu ◽  
James Harding ◽  
Thomas Byrne

Genetic components of variance and heritability of flowering time were estimated for five generations of the Davis Populationof Gerbera hybrids, Composite, Estimates of narrow-sense heritability averaged 0.50 and broad-sense heritability averaged 0.77 using the NCII design. Narrow-sense heritability was also estimated with two models of parent-offspring regression, resulting in average heritability of 0.49 and 0.51. Estimates of components of variance indicated that the major genetic effect controlling flowering time is additive. However, the dominance component accounted for 28% of the total variance; the environmental component was only 23%. Flowering time is negatively correlated with cut-flower yield. The phenotypic coefficient was –0.34; genetic correlations were –0.47 when estimated from the NCII design, and –0.72 when estimated from the parent-off-spring method. A practical model was constructed to assess the efficiency of indirect selection for cut-flower yield using flowering time as a marker trait. The advantages of indirect selection accruing from increased population size and reduced generation time are discussed.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 473b-473
Author(s):  
Kenneth R. Schroeder ◽  
Dennis P. Stimart

Breeding for postharvest longevity of cut flowers has not been done to any great extent in spite of the potential benefits from reduced chemical preservative usage and increased popularity of cuts due to longer vaselife. Some studies have reported broad-sense heritabilities for postharvest longevity of 36% to 46% and narrow-sense heritabilities of 0% to 38%. Postharvest longevity of cut flowers of Antirrhinum majus L. (snapdragon) inbreds range from 2 to 16 d with the F1 hybrids intermediate at 8.1 d when evaluated in deionized water. It would appear postharvest longevity of snapdragon cut flowers should be a selectable trait. In an effort to determine narrow-sense heritability for postharvest longevity of snapdragon cut flowers, a generation means analysis was established using single-seed descent S4 generation inbreds with postharvest longevities of 2 and 15 d. Plants were grown in greenhouses at the Univ. of Wisconsin, Madison, in August and harvested in Nov. 1997 for postharvest evaluation. Experimental design was a randomized complete block with 2 environments and 3 replications. Nonsegregating generations (P1, P2, and F1) consisted of 10 plants per replication, backcrosses 30 plants per replication, and the F2 with 60 plants per replication. Data will be presented on narrow-sense heritability of postharvest longevity of snapdragon cut flowers.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 401E-401
Author(s):  
Kenneth R. Schroeder ◽  
Dennis P. Stimart

Postharvest longevity (PHL) is important in determining quality and consumer preference of cut flowers; thus, it remains a pressing problem for the florist industry. Information on genetics and heritability of cut flower PHL is lacking. This study focused on determining gene numbers and inheritance of Antirrhinum majus L. cut flower PHL. An inbred backcross population was generated from a yellow short-lived (YS; 6d PHL) and a white long-lived (WL; 14 d PHL) inbred. F1 hybrids were backcrossed reciprocally three times to each parent. Parental backcross (BC) populations contained 55 to 65 lines. Lines within each BC generation were self-fertilized three generations by single-seed descent without selection to produce BC1S3, BC2S3, and BC3S3 generations. Cut flowers from all generations were evaluated together for PHL in deionized water. Gene numbers were estimated using confidence intervals and the proportion of non-parental BC lines. Continuous variation, estimates of a minimum of two to four genes controlling PHL, and significant environmental variation suggest selection for increased PHL would be successfu,l but slow. A negative correlation between PHL and yellow flower color was detected in this study. In spite of that fact, mean PHL of the yellow flowered inbred lines improved 1 to 2 d when backcrossing to YS and 3 to 4 d when backcrossing to WL without selection. Thus, inbred backcrossing to a long-lived parent with selection for flower color should make acquisition of longlived colored lines attainable.


2010 ◽  
Vol 50 (12) ◽  
pp. 1089 ◽  
Author(s):  
S. Hatcher ◽  
P. I. Hynd ◽  
K. J. Thornberry ◽  
S. Gabb

Genetic parameters (heritability, phenotypic and genetic correlations) were estimated for a range of visual and measured wool traits recorded from the 2008 shearing of the initial cohort of Merino progeny born into the Sheep CRC’s Information Nucleus Flock. The aim of this initial analysis was to determine the feasibility of selectively breeding Merino sheep for softer, whiter, more photostable wool and to quantify the likely impact on other wool production and quality traits. The estimates of heritability were high for handle and clean colour (0.86 and 0.70, respectively) and moderate for photostability (0.18), with some evidence of maternal effects for both handle and photostability. The phenotypic correlations between handle and clean colour and between handle and photostability were close to zero, indicating that achieving the ‘triple’ objective of softer, whiter, more photostable wool in the current generation through phenotypic selection alone would be difficult. There was evidence of an antagonistic relationship between handle and photostability (–0.36), such that genetic selection for softer wool will produce less photostable wool that will yellow on exposure to UV irradiation. However genetic selection for whiter wool is complementary to photostability and will result in whiter wool that is less likely to yellow. Genetic selection to improve handle, colour and photostability can be achieved with few detrimental effects on other visual and measured wool traits, particularly if they are included in an appropriate selection index.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 17-18
Author(s):  
Guoyu Hu ◽  
Duy Ngoc Do ◽  
Janine Gray ◽  
Karim Karimi ◽  
Younes Miar

Abstract Aleutian disease brings tremendous financial losses to the mink industry. The ineffective immunoprophylaxis, medication, and culling strategies have urged the mink industry to select mink with low quantitative enzyme-linked immunosorbent assay (qELISA) score or negative counterimmunoelectrophoresis (CIEP) test result. However, little is known about the heritabilities of qELISA and CEIP as well as their relationships with growth and pelt quality traits. The traits, including qELISA, CIEP, body length at harvest (HLEN), the size of dried pelt (SIZE), the overall quality of dried pelt (QUA), and the nap length of dried pelt (NAP), were measured on 1,683 American mink from the Canadian Center for Fur Animal Research (Nova Scotia, Canada) and Millbank Fur Farm (Ontario, Canada). Significance (P < 0.05) of fixed effects (sex, farm, age, and color) and random effects (common litter, permanent environment, and dam) were determined by univariate analyses, while genetic and phenotypic parameters for all traits were estimated under bivariate analyses using ASREML 4.1. Estimated heritabilities (±SE) were 0.41±0.07 for qELISA, 0.06±0.06 for CIEP, 0.39±0.06 for HLEN, 0.46±0.07 for SIZE, 0.25±0.06 for QUA, and 0.46±0.08 for NAP. The qELISA showed non-significant (P > 0.05) genetic correlations with HLEN (0.05±0.13) and dried pelt traits (0.02±0.18 with SIZE, -0.21±0.20 with QUA, and -0.13±0.16 with NAP). The CIEP only showed a significant (P < 0.05) negative genetic correlation with SIZE (-0.85±0.33). The moderate-to-high heritabilities of qELISA, HLEN, SIZE, QUA, and NAP indicated that these traits can be genetically improved through a genetic/genomic selection. The low and non-significant heritability of CIEP indicated the ineffectiveness of direct selection for this trait. The estimated genetic parameters for qELISA suggested that selection for lower qELISA scores may not interfere with the selection of pelt size and quality in the genetic improvement programs of American mink.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1252-1258 ◽  
Author(s):  
William J. Martin ◽  
Dennis P. Stimart

Stomatal density during plant development and inheritance of the trait were investigated with the goal of utilizing stomatal density as a correlated trait to cutflower postharvest longevity in Antirrhinum majus L. Inbred P1 (stomatal index = 0.2) was hybridized to inbred P2 (stomatal index = 0.3) to produce F1 (P1 × P2), which was backcrossed to each parent producing BCP1 (F1 × P1) and BCP2 (F1 × P2). P1, P2, F1, BCP1, and BCP2 were used to examine changes in stomatal density with plant development and early generation inheritance. An F2 (F1 self-pollinated), and F3, F4, and F5 families, derived by self-pollination and single seed descent, were used to obtain information on advanced generation inheritance. Stomatal density was stable over time and with development of leaves at individual nodes after seedlings reached two weeks of age. Therefore, stomatal density can be evaluated after two weeks of plant development from a leaf at any node. Stomatal density is quantitatively inherited with narrow sense heritabilities of h2F2:F3 = 0.47 to 0.49, h2F3:F4 = 0.37 ± 0.06 to 0.60 ± 0.07, and h2F4:F5 = 0.47 ± 0.07 to 0.50 ± 0.07.


2007 ◽  
Vol 56 (1-6) ◽  
pp. 242-252 ◽  
Author(s):  
Y. H. Weng ◽  
K. J. Tosh ◽  
Y. S. Park ◽  
M. S. Fullarton

Abstract Trends in genetic parameters for height growth of jack pine (Pinus banksiana Lamb.) were examined over three series of family tests throughout New Brunswick. Data were analyzed for each site and across sites within each series. Although individual narrow sense heritability estimates from single-site analyses varied substantially from site to site and showed no consistent age-related pattern, the estimates from across-site analyses showed an increasing trend to age 20. Similar as individual narrow sense heritability, the coefficient of additive genetic variance estimated from single site showed more variation than those estimated from across site analyses. Age-age (type-a) genetic correlations for height were high and could be well predicted by a LAR2 model, where LAR is the natural logarithm of the ratio between two ages at assessment. Type-b genetic correlations were high and of similar magnitude at different ages. Genetic correlations between height at different ages and volume at one-half rotation age were generally high. Taking the volume at one-half rotation age as the target trait, the selection for target trait from early selection at ages 5~7 could be more efficient per year than direct selection.


Sign in / Sign up

Export Citation Format

Share Document