scholarly journals Nutrient Uptake among Subspecies of Cucurbita pepo L. Is Related to Exudation of Citric Acid

2005 ◽  
Vol 130 (5) ◽  
pp. 782-788 ◽  
Author(s):  
Martin P.N. Gent ◽  
Zakia D. Parrish ◽  
Jason C. White

Exudation of organic acids by roots has been implicated in uptake of minerals from soil. Three cultivars within each of two subspecies of summer squash (Cucurbita pepo ssp. ovifera D. S. Decker var. ovifera and C. pepo ssp. pepo var. pepo) were grown in the field. Plants of ssp. pepo had higher concentrations of K, P, and Zn than those of ssp. ovifera. These same cultivars were grown under P sufficient and depleted conditions in hydroponics, to measure exudation of organic acids from roots. When grown in hydroponics, tissues of ssp. ovifera had similar or higher concentrations of nutrients than ssp. pepo. Therefore, differences in tissue composition of field-grown plants are likely due to differences in nutrient uptake ability, not inherent differences in tissue composition between subspecies. Phosphorus nutrition played a significant role in exudation of organic acids into the hydroponics solution. For both subspecies, P depletion resulted in exudation of more citric and succinic acid, and less oxalic and tartaric acid. Under P depletion, ssp. pepo exuded more citric acid than ssp. ovifera. When soil was eluted with solution containing root exudates, the exudates from ssp. pepo eluted more K, Mg, Fe, and Zn than did those from ssp. ovifera. Among subspecies of C. pepo, exudation of organic acids, particularly exudation of citric acid in response to P depletion, is associated with the plant's ability to accumulate more inorganic nutrients when grown in the field.

2011 ◽  
Vol 194-196 ◽  
pp. 802-805
Author(s):  
Zhan Sheng Wu ◽  
Xi Fang Sun ◽  
Chun Li

Effects of different bentonite clarificants on the main organic acids contents in wine were investigated during the clarification process. Citric acid (CA) concentration changed slightly during the first day with average elimination ratio (AER) of 0.57%, and tartaric acid (TA), malic acid (MA), lactic acid (LA) and succinic acid (SA) were varied with AER of 12.39%, 9.80%, 7.27% and 6.27%, respectively, while acetic acid (AA) has the biggest AER of 15.42%. The pH and titratable acidity were significantly dependent on the variation of CA and TA. The –OH group in organic acids could be combined with –Si-O or –AlO groups in bentonite surface by hydrogen bond, which could caused the decrease in concentration various organic acids.


2015 ◽  
Vol 12 (2) ◽  
pp. 340-349
Author(s):  
Baghdad Science Journal

A new reversed phase- high performance liquid chromatographic (RP-HPLC) method with Ultraviolet-Visible spectrophotometry has been optimized and validated for the simultaneous extraction and determination of organic acids present in Iraqi calyces of Hibiscus Sabdraffia Linn. The method is based on using ultrasonic bath for extracting organic acids. Limit of detection in µg/ml of Formic acid, Acetic acid, Oxalic acid, Citric acid, Succinic acid, Tartaric acid, and Malic acid 126.8498×10-6, 113.6005×10-6, 97.0513×10-6, 49.7925×10-6, 84.0753×10-6, 92.6551×10-6, and 106.1633×10-6 ,respectively. The concentration of organic acids found in dry spacemen of calyces of Iraqi Hibiscus Sabdraffia Linn. under study: Formic acid, Acetic acid, Oxalic acid, Citric acid, Succinic acid, Tartaric acid, and Malic acid are 114.896 µg/g, 64.722 µg/g, 342.508 µg/g, 126.902 µg/g, 449.91 µg/g, 268.52 µg/g, and 254.07 µg/g respectively.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 761-761
Author(s):  
Miao Li ◽  
Kai Li ◽  
Hao Song

Abstract Objectives The natural fermentation broth of vegetables and fruits is produced by anaerobic fermentation of vegetables and fruits, so as to form a fermentation beverage with complex components. Some components in the fermentation broth can promote digestion and absorption, alleviate constipation and beautify the face. Fruit and vegetable fermentation can be added into baking products to make natural yeast bread with good flavor and long shelf life. The fermentation broth has broad market application prospects. The contents of organic acids may play an important role in the flavor and nutrition of the natural fermentation broth of vegetables and fruits, which are still under researching. Methods HPLC (High Performance Liquid Chromatography) was used to detect the contents of several kinds of organic acids, such as acetic acid, lactic acid, oxalic acid, citric acid, succinic acid, tartaric acid. Results The contents of acetic acid, lactic acid, oxalic acid, citric acid, succinic acid, tartaric acid in compound natural fermentation broth (grapefruit + apple + lemon) was 5.650 mg/mL, 0.171 mg/mL, 0.013 mg/mL, 0.213 mg/mL, 0.763 mg/mL, 0.628 mg/mL. Conclusions The contents of organic acids were significantly different among different natural fermentation liquors of vegetables and fruits due to different raw materials, formulations and fermentation time. Funding Sources Beijing Yiqing Holding Co., Ltd.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1920
Author(s):  
Yogesh Sutar ◽  
Tejabhiram Yadavalli ◽  
Sagar Kumar Paul ◽  
Sudipta Mallick ◽  
Raghuram Koganti ◽  
...  

BX795 is a TANK binding kinase-1 inhibitor that has shown excellent therapeutic activity in murine models of genital and ocular herpes infections on topical delivery. Currently, only the BX795 free base and its hydrochloride salt are available commercially. Here, we evaluate the ability of various organic acids suitable for vaginal and/or ocular delivery to form BX795 salts/cocrystals/co-amorphous systems with the aim of facilitating pharmaceutical development of BX795. We characterized BX795-organic acid coevaporates using powder X-ray diffractometry, Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, 1H-nuclear magnetic resonance spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to elucidate the interaction between BX795 and various organic acids such as taurine, maleic acid, fumaric acid, tartaric acid, and citric acid. Furthermore, using human corneal epithelial cells and HeLa cells, we evaluated BX795-organic acid coevaporates for in vitro cytocompatibility and in vitro antiviral activity against herpes simplex virus-type 1 (HSV-1) and type-2 (HSV-2). Our studies indicate that BX795 forms co-amorphous systems with tartaric acid and citric acid. Interestingly, the association of organic acids with BX795 improved its thermal stability. Our in vitro cytocompatibility and in vitro antiviral studies to screen suitable BX795-organic acid coevaporates for further development show that all BX795-organic acid systems, at a concentration equivalent to 10 µM BX795, retained antiviral activity against HSV-1 and HSV-2 but showed differential cytocompatibility. Further, dose-dependent in vitro cytocompatibility and antiviral activity studies on the BX795-fumaric acid system, BX795-tartaric acid co-amorphous system, and BX795-citric acid co-amorphous system show similar antiviral activity against HSV-1 and HSV-2 compared to BX795, whereas only the BX795-citric acid co-amorphous system showed higher in vitro cytocompatibility compared to BX795.


1989 ◽  
Vol 52 (11) ◽  
pp. 771-776 ◽  
Author(s):  
MOUSTAFA A. EL-SHENAWY ◽  
ELMER H. MARTH

Tests were done to determine the fate of Listeria monocytogenes at 13 or 35°C in Tryptose Broth (TB) with and without the pH adjusted to 5.6 or 5.0 using acetic, tartaric, lactic, or citric acid and containing 0.00, 0.05, 0.15, or 0.3% sodium benzoate. The bacterium grew in all controls (free of benzoate) under all conditions except only slight growth was detected at 13°C when the pH was adjusted to 5.0 using acetic or tartaric acid. When TB was acidified with acetic or tartaric acid and incubated at 35°C, the bacterium was inactivated or inhibited under all conditions except growth occurred at pH 5.6 with 0.05 or 0.15% sodium benzoate and at pH 5.0 with 0.05% benzoate. Incubation at 13°C with the same acids in TB was accompanied by inactivation or inhibition of the bacterium at all test conditions except in the presence of 0.05% sodium benzoate and pH 5.6 obtained by added acetic acid, and in the presence of 0.05 or 0.15% benzoate when tartaric acid was used to adjust the pH to 5.6. Acidifying TB with lactic or citric acid and incubating at 35°C resulted in growth at pH 5.0 and 5.6 regardless of concentration of benzoate except 0.3% which caused inhibition or inactivation at pH 5.6 or 5.0, respectively. Incubation at 13°C with the same acids in TB resulted in inactivation or inhibition of L. monocytogenes, except growth occurred at pH 5.6 when the medium contained 0.05 or 0.15% benzoate. Slight growth was observed in the presence of 0.05% benzoate at pH 5.0 when the medium was acidified by lactic or acetic acid.


2016 ◽  
Vol 79 (12) ◽  
pp. 2184-2189 ◽  
Author(s):  
MYEONGGEUN OH ◽  
JOONGJAE LEE ◽  
YOONHWA JEONG ◽  
MISOOK KIM

ABSTRACT We investigated the synergistic effects of lysozyme combined with organic acids to inhibit the growth of Listeria monocytogenes. The antilisterial effects of the combination of lysozyme and acetic acid, citric acid, lactic acid, malic acid, or succinic acid were evaluated using the checkerboard method and time-kill assay. The MIC was 25,000 mg/liter for lysozyme, 625 mg/liter for acetic acid, and 1,250 mg/liter for the other acids. The MBC was 10,000 mg/liter for all of the tested organic acids. The combination of lysozyme and each organic acid showed synergistic effects via the checkerboard method; however, the time-kill assay showed synergistic effects for only three combinations of 1,250 mg/liter lysozyme with succinic acid (312 and 625 mg/liter) or malic acid (625 mg/liter). The results of this study indicate that the combination of lysozyme and malic acid or succinic acid can be effectively used as a food preservative to control L. monocytogenes.


2006 ◽  
Vol 19 (10) ◽  
pp. 1121-1126 ◽  
Author(s):  
Faina Kamilova ◽  
Lev V. Kravchenko ◽  
Alexander I. Shaposhnikov ◽  
Nataliya Makarova ◽  
Ben Lugtenberg

The effects of the pathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici and of the bacterial biocontrol strain Pseudomonas fluorescens WCS365, and of both microbes, on the amounts and composition of root exudate components of tomato plants grown in a gnotobiotic stonewool substrate system were studied. Conditions were selected under which introduction of F. oxysporum f. sp. radicis-lycopersici caused severe foot and root rot, whereas inoculation of the seed with P. fluorescens WCS365 decreased the percentage of diseased plants from 96 to 7%. This is a much better disease control level than was observed in potting soil. Analysis of root exudate revealed that the presence of F. oxysporum f. sp. radicis-lycopersici did not alter the total amount of organic acids, but that the amount of citric acid decreased and that of succinic acid increased compared with the nontreated control. In contrast, in the presence of the P. fluorescens biocontrol strain WCS365, the total amount of organic acid increased, mainly due to a strong increase of the amount of citric acid, whereas the amount of succinic acid decreased dramatically. Under biocontrol conditions, when both microbes are present, the content of succinic acid decreased and the level of citric acid was similar to that in the nontreated control. The amount of sugar was approximately half that of the control sample when either one of the microbes was present alone or when both were present. Analysis of the interactions between the two microbes grown together in sterile tomato root exudate showed that WCS365 inhibited multiplication of F. oxysporum f. sp. radicis-lycopersici, whereas the fungus did not affect the number of CFU of the bacterium.


2018 ◽  
Vol 37 (8) ◽  
pp. 3038-3044 ◽  
Author(s):  
Wensheng Tan ◽  
Renjun Fu ◽  
Hong Ji ◽  
Datong Wu ◽  
Yueguo Xu ◽  
...  

2011 ◽  
Vol 33 (2) ◽  
pp. 540-550 ◽  
Author(s):  
Annete de Jesus Boari Lima ◽  
Angelita Duarte Corrêa ◽  
Ana Maria Dantas-Barros ◽  
David Lee Nelson ◽  
Ana Carolina Lourenço Amorim

The aim of this work was to determine the sugar, organic acid and mineral compositions of the whole fruit and fractions (skin, pulp and seed) of the Paulista (Plinia cauliflora) and Sabará (Plinia jaboticaba) jabuticaba tree genotypes, as well as the oil compositions of their skin and seeds. High levels of sugar, especially fructose, followed by glucose and sucrose, were encountered in the fruit. In the Paulista genotype, higher levels of total and reducing sugars were found in the pulp and skin, which was not observed when comparing the whole fruit of both genotypes. Five organic acids were found in the whole fruit and in the fractions of the two jabuticaba genotypes in quantitative order: citric acid > succinic acid > malic acid > oxalic acid > acetic acid. Potassium was the most abundant mineral found. This fruit was also shown to be rich in magnesium, phosphorus, calcium and copper. The seed oil had nearly the same constitution as the oil extracted from the skin in both genotypes and the major compounds were an unidentified phytosterol, palmitic, linoleic and oleic acids, and squalene.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Aicha El Baaboua ◽  
Mohamed El Maadoudi ◽  
Abdelhakim Bouyahya ◽  
Omar Belmehdi ◽  
Ayoub Kounnoun ◽  
...  

Today, the general public has become increasingly aware of salmonellosis problems. Organic acids are known by their antimicrobial potential and commonly used for improving the quality of poultry feed. In this context, the present work evaluated the inhibitory effect of four organic acids, namely, acetic acid, citric acid, lactic acid, and tartaric acid, at different levels of contamination bySalmonella typhimurium. The neutralization of these organic acidsin vitroand in the presence of one-day-old chick’s organs was also investigated during the search forSalmonellaserovars in birds as described in the Moroccan standard “NM 08.0.550.” The effect of four organic acids onSalmonella typhimuriumwas testedin vitroand in the presence of chick’s organs at different concentrations set of strain and organic acids tested. The MIC results demonstrated that tartaric acid, citric acid, and acetic acid inhibitedSalmonella typhimuriumat concentrations of 0.312%, 0.625%, and 0.512% for the three levels of strain: 10, 100, and 103 CFU/ml, respectively, while lactic acid and depending on the amount of the strain introduced acts differently: 0.078% for 10 CFU/ml and 0.156% for 100 and 103 CFU/ml. The concentration of 0.04M of Na2HPO4solution has proved,in vitro, in caecums and organs of chicks (in presence of organic acids) that strain introduced, even at low concentrations, can be recovered. The use of additives has beneficial effects inSalmonellacontrol program. However, the present results recommend the amendment ofSalmonellaresearch standard, taking into account the probable presence of organic acids in digestive content of one-day-old chicks.


Sign in / Sign up

Export Citation Format

Share Document