Effects of Bentonite Clarificants on Organic Acids Contents in Red Wine during Clarification

2011 ◽  
Vol 194-196 ◽  
pp. 802-805
Author(s):  
Zhan Sheng Wu ◽  
Xi Fang Sun ◽  
Chun Li

Effects of different bentonite clarificants on the main organic acids contents in wine were investigated during the clarification process. Citric acid (CA) concentration changed slightly during the first day with average elimination ratio (AER) of 0.57%, and tartaric acid (TA), malic acid (MA), lactic acid (LA) and succinic acid (SA) were varied with AER of 12.39%, 9.80%, 7.27% and 6.27%, respectively, while acetic acid (AA) has the biggest AER of 15.42%. The pH and titratable acidity were significantly dependent on the variation of CA and TA. The –OH group in organic acids could be combined with –Si-O or –AlO groups in bentonite surface by hydrogen bond, which could caused the decrease in concentration various organic acids.

2016 ◽  
Vol 79 (12) ◽  
pp. 2184-2189 ◽  
Author(s):  
MYEONGGEUN OH ◽  
JOONGJAE LEE ◽  
YOONHWA JEONG ◽  
MISOOK KIM

ABSTRACT We investigated the synergistic effects of lysozyme combined with organic acids to inhibit the growth of Listeria monocytogenes. The antilisterial effects of the combination of lysozyme and acetic acid, citric acid, lactic acid, malic acid, or succinic acid were evaluated using the checkerboard method and time-kill assay. The MIC was 25,000 mg/liter for lysozyme, 625 mg/liter for acetic acid, and 1,250 mg/liter for the other acids. The MBC was 10,000 mg/liter for all of the tested organic acids. The combination of lysozyme and each organic acid showed synergistic effects via the checkerboard method; however, the time-kill assay showed synergistic effects for only three combinations of 1,250 mg/liter lysozyme with succinic acid (312 and 625 mg/liter) or malic acid (625 mg/liter). The results of this study indicate that the combination of lysozyme and malic acid or succinic acid can be effectively used as a food preservative to control L. monocytogenes.


2015 ◽  
Vol 12 (2) ◽  
pp. 340-349
Author(s):  
Baghdad Science Journal

A new reversed phase- high performance liquid chromatographic (RP-HPLC) method with Ultraviolet-Visible spectrophotometry has been optimized and validated for the simultaneous extraction and determination of organic acids present in Iraqi calyces of Hibiscus Sabdraffia Linn. The method is based on using ultrasonic bath for extracting organic acids. Limit of detection in µg/ml of Formic acid, Acetic acid, Oxalic acid, Citric acid, Succinic acid, Tartaric acid, and Malic acid 126.8498×10-6, 113.6005×10-6, 97.0513×10-6, 49.7925×10-6, 84.0753×10-6, 92.6551×10-6, and 106.1633×10-6 ,respectively. The concentration of organic acids found in dry spacemen of calyces of Iraqi Hibiscus Sabdraffia Linn. under study: Formic acid, Acetic acid, Oxalic acid, Citric acid, Succinic acid, Tartaric acid, and Malic acid are 114.896 µg/g, 64.722 µg/g, 342.508 µg/g, 126.902 µg/g, 449.91 µg/g, 268.52 µg/g, and 254.07 µg/g respectively.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 761-761
Author(s):  
Miao Li ◽  
Kai Li ◽  
Hao Song

Abstract Objectives The natural fermentation broth of vegetables and fruits is produced by anaerobic fermentation of vegetables and fruits, so as to form a fermentation beverage with complex components. Some components in the fermentation broth can promote digestion and absorption, alleviate constipation and beautify the face. Fruit and vegetable fermentation can be added into baking products to make natural yeast bread with good flavor and long shelf life. The fermentation broth has broad market application prospects. The contents of organic acids may play an important role in the flavor and nutrition of the natural fermentation broth of vegetables and fruits, which are still under researching. Methods HPLC (High Performance Liquid Chromatography) was used to detect the contents of several kinds of organic acids, such as acetic acid, lactic acid, oxalic acid, citric acid, succinic acid, tartaric acid. Results The contents of acetic acid, lactic acid, oxalic acid, citric acid, succinic acid, tartaric acid in compound natural fermentation broth (grapefruit + apple + lemon) was 5.650 mg/mL, 0.171 mg/mL, 0.013 mg/mL, 0.213 mg/mL, 0.763 mg/mL, 0.628 mg/mL. Conclusions The contents of organic acids were significantly different among different natural fermentation liquors of vegetables and fruits due to different raw materials, formulations and fermentation time. Funding Sources Beijing Yiqing Holding Co., Ltd.


1999 ◽  
Vol 62 (5) ◽  
pp. 451-455 ◽  
Author(s):  
JEE-HOON RYU ◽  
YUN DENG ◽  
LARRY R. BEUCHAT

A study was done to determine if various organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted Escherichia coli O157:H7 cells. E. coli O157:H7 strain E0139, isolated from venison jerky, was grown in tryptic soy broth (TSB) and in TSB supplemented with 1% glucose (TSBG) for 18 h at 37°C, then plated on tryptic soy agar (TSA) acidified with malic, citric, lactic, or acetic acid at pH 5.4, 5.1, 4.8, 4.5, 4.2, and 3.9. Regardless of whether cells were grown in TSB or TSBG, visible colonies were not formed when plated on TSA acidified with acetic, lactic, malic, or citric acids at pH values of ≤5.4, ≤4.5, ≤4.2, or ≤4.2, respectively. Cells not adapted to reduced pH did not form colonies on TSA acidified with lactic acid (pH 3.9) or acetic acid (pH 3.9 and 4.2); however, a portion of acid-adapted cells remained viable on TSA containing lactic acid (pH 3.9) or acetic acid (pH 4.2) and could be recovered in TSB. Inactivation of acid-adapted cells was less than that of unadapted cells in TSB acidified at pH 3.9 with citric, lactic, or acetic acid and at pH 3.4 with malic acid. Significantly (P ≤ 0.05) higher numbers of acid-adapted cells, compared with unadapted cells, were detected 12 h after inoculation of TSB acidified with acetic acid at pH 3.9; in TSB containing lactic acid (pH 3.9), the number of acid-adapted cells was higher than the number of unadapted cells after 5 h. In TSB acidified at pH 3.9 with citric acid or pH 3.4 with malic acid, significantly higher numbers of acid-adapted cells survived. This study shows that organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted E. coli O157:H7 cells, and acid-adapted cells are more tolerant than unadapted cells when subsequently exposed to reduced pH caused by these acids.


2011 ◽  
Vol 33 (2) ◽  
pp. 540-550 ◽  
Author(s):  
Annete de Jesus Boari Lima ◽  
Angelita Duarte Corrêa ◽  
Ana Maria Dantas-Barros ◽  
David Lee Nelson ◽  
Ana Carolina Lourenço Amorim

The aim of this work was to determine the sugar, organic acid and mineral compositions of the whole fruit and fractions (skin, pulp and seed) of the Paulista (Plinia cauliflora) and Sabará (Plinia jaboticaba) jabuticaba tree genotypes, as well as the oil compositions of their skin and seeds. High levels of sugar, especially fructose, followed by glucose and sucrose, were encountered in the fruit. In the Paulista genotype, higher levels of total and reducing sugars were found in the pulp and skin, which was not observed when comparing the whole fruit of both genotypes. Five organic acids were found in the whole fruit and in the fractions of the two jabuticaba genotypes in quantitative order: citric acid > succinic acid > malic acid > oxalic acid > acetic acid. Potassium was the most abundant mineral found. This fruit was also shown to be rich in magnesium, phosphorus, calcium and copper. The seed oil had nearly the same constitution as the oil extracted from the skin in both genotypes and the major compounds were an unidentified phytosterol, palmitic, linoleic and oleic acids, and squalene.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Aicha El Baaboua ◽  
Mohamed El Maadoudi ◽  
Abdelhakim Bouyahya ◽  
Omar Belmehdi ◽  
Ayoub Kounnoun ◽  
...  

Today, the general public has become increasingly aware of salmonellosis problems. Organic acids are known by their antimicrobial potential and commonly used for improving the quality of poultry feed. In this context, the present work evaluated the inhibitory effect of four organic acids, namely, acetic acid, citric acid, lactic acid, and tartaric acid, at different levels of contamination bySalmonella typhimurium. The neutralization of these organic acidsin vitroand in the presence of one-day-old chick’s organs was also investigated during the search forSalmonellaserovars in birds as described in the Moroccan standard “NM 08.0.550.” The effect of four organic acids onSalmonella typhimuriumwas testedin vitroand in the presence of chick’s organs at different concentrations set of strain and organic acids tested. The MIC results demonstrated that tartaric acid, citric acid, and acetic acid inhibitedSalmonella typhimuriumat concentrations of 0.312%, 0.625%, and 0.512% for the three levels of strain: 10, 100, and 103 CFU/ml, respectively, while lactic acid and depending on the amount of the strain introduced acts differently: 0.078% for 10 CFU/ml and 0.156% for 100 and 103 CFU/ml. The concentration of 0.04M of Na2HPO4solution has proved,in vitro, in caecums and organs of chicks (in presence of organic acids) that strain introduced, even at low concentrations, can be recovered. The use of additives has beneficial effects inSalmonellacontrol program. However, the present results recommend the amendment ofSalmonellaresearch standard, taking into account the probable presence of organic acids in digestive content of one-day-old chicks.


2006 ◽  
Vol 69 (1) ◽  
pp. 34-38 ◽  
Author(s):  
ARTHUR HINTON

The growth of Campylobacter spp. in media supplemented with organic acids was examined. A Bioscreen C Microbiology Reader was used to measure growth of cultures incubated at 37°C for 48 h in a tryptose–yeast extract basal broth medium and in basal broth supplemented with 10, 20, 30, 40, or 50 mM citric, fumaric, lactic, malic, or succinic acid. Growth of three of six isolates was significantly greater (P ≤ 0.05) in media supplemented with 20 to 50 mM citric acid than in nonsupplemented media, growth of five of six isolates was significantly greater in media supplemented with 10 to 50 mM succinic acid than in nonsupplemented media, and growth of six of six isolates was significantly greater in media supplemented with 10 to 50 mM fumaric or malic acid or with 20 to 50 mM lactic acid than in nonsupplemented media. Isolates were also cultured in basal media supplemented with a mixture of 10, 20, 30, 40, or 50 mM fumaric, malic, lactic, and succinic acids. Results indicated that the growth of all Campylobacter isolates was significantly greater in media supplemented with mixtures containing each of these organic acids at 10 to 40 mM than in nonsupplemented media. These findings indicate that in vitro growth of Campylobacter spp. may be significantly enhanced in media supplemented with organic acids that support the growth of these bacteria.


1989 ◽  
Vol 52 (8) ◽  
pp. 571-573 ◽  
Author(s):  
KENT M. SORRELLS ◽  
DAVIN C. ENIGL ◽  
JOHN R. HATFIELD

The effect of different acids, pH, incubation time, and incubation temperature on the growth and survival of four strains of Listeria monocytogenes in tryptic soy broth was compared. Hydrochloric acid (HCl), acetic acid (AA), lactic acid (LA), malic acid (MA), and citric acid (CA) were used to acidify tryptic soy broth to pH values 4.4, 4.6, 4.8, 5.0, and 5.2 pH. Incubation times were 1, 3, 7, 14, and 28 d at 10, 25, and 35°C. The inhibition of L. monocytogenes in the presence of high acidity appears to be a function of acid and incubation temperature. Based on equal pH values, the antimicrobial activity is AA > LA > CA ≥ MA > HCl at all incubation times and temperatures. When based on equal molar concentration, the activity appeared to be CA ≥ MA > LA ≥ AA > HCl at 35 and 25°C, and MA > CA > AA ≥ LA > HCl at 10°C. Greatest antimicrobial activity occurred at 35°C. Greatest survival occurred at 10°C and greatest growth occurred at 25°C. Final pH of the medium was as low as 3.8 in HCl at 28 d. All strains grew well at pH values lower than the minimum previously reported (5.5–5.6).


1989 ◽  
Vol 52 (11) ◽  
pp. 771-776 ◽  
Author(s):  
MOUSTAFA A. EL-SHENAWY ◽  
ELMER H. MARTH

Tests were done to determine the fate of Listeria monocytogenes at 13 or 35°C in Tryptose Broth (TB) with and without the pH adjusted to 5.6 or 5.0 using acetic, tartaric, lactic, or citric acid and containing 0.00, 0.05, 0.15, or 0.3% sodium benzoate. The bacterium grew in all controls (free of benzoate) under all conditions except only slight growth was detected at 13°C when the pH was adjusted to 5.0 using acetic or tartaric acid. When TB was acidified with acetic or tartaric acid and incubated at 35°C, the bacterium was inactivated or inhibited under all conditions except growth occurred at pH 5.6 with 0.05 or 0.15% sodium benzoate and at pH 5.0 with 0.05% benzoate. Incubation at 13°C with the same acids in TB was accompanied by inactivation or inhibition of the bacterium at all test conditions except in the presence of 0.05% sodium benzoate and pH 5.6 obtained by added acetic acid, and in the presence of 0.05 or 0.15% benzoate when tartaric acid was used to adjust the pH to 5.6. Acidifying TB with lactic or citric acid and incubating at 35°C resulted in growth at pH 5.0 and 5.6 regardless of concentration of benzoate except 0.3% which caused inhibition or inactivation at pH 5.6 or 5.0, respectively. Incubation at 13°C with the same acids in TB resulted in inactivation or inhibition of L. monocytogenes, except growth occurred at pH 5.6 when the medium contained 0.05 or 0.15% benzoate. Slight growth was observed in the presence of 0.05% benzoate at pH 5.0 when the medium was acidified by lactic or acetic acid.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Chae Eun Song ◽  
Han Hyo Shim ◽  
Palaniselvam Kuppusamy ◽  
Young-IL Jeong ◽  
Kyung Dong Lee

The objective of this study was to investigate alginate microencapsulated lactic acid bacteria (LAB) fermentation quality of radish kimchi sample and its potential survivability in different acidic and alkaline environments. Initially, we isolated 45 LAB strains. One of them showed fast growth pattern with potential probiotic and antifungal activities against Aspergillus flavus with a zone of inhibition calculated with 10, 8, 4mm for the 4th, 5th, and 6th day, respectively. Therefore, this strain (KCC-42) was chosen for microencapsulation with alginate biopolymer. It showed potential survivability in in-vitro simulated gastrointestinal fluid and radish kimchi fermentation medium. The survival rate of this free and encapsulated LAB KCC-42 was 6.85 × 105 and 7.48× 105 CFU/ml, respectively; the viability count was significantly higher than nonencapsulated LAB in simulated gastrointestinal juices (acid, bile, and pancreatin) and under radish kimchi fermentation environment. Kimchi sample added with this encapsulated LAB showed increased production of organic acids compared to nonencapsulated LAB sample. Also, the organic acids such as lactic acid, acetic acid, propionic acid, and succinic acid production in fermented kimchi were measured 59mM, 26mM, 14mM, and 0.6mM of g/DW, respectively. The production of metabolites such as lactic acid, acetic acid, and succinic acid and the bacteria population was high in microencapsulated LAB samples compared with free bacteria added kimchi sample. Results of this study indicate that microencapsulated LAB KCC-42 might be a useful strategy to develop products for food and healthcare industries.


Sign in / Sign up

Export Citation Format

Share Document