scholarly journals Inflorescence Identity Gene Alleles Are Poor Predictors of Inflorescence Type in Broccoli and Cauliflower

2006 ◽  
Vol 131 (5) ◽  
pp. 667-673 ◽  
Author(s):  
Joanne A. Labate ◽  
Larry D. Robertson ◽  
Angela M. Baldo ◽  
Thomas Björkman

Broccoli (Brassica oleracea L. var. italica Plenck) and cauliflower (B. oleracea var. botrytis DC) are closely related botanical varieties. The underlying genetic bases of their phenotypic differences from each other are not well understood. A molecular genetic marker enabling B. oleracea germplasm curators and breeders to predict phenotype from seeds or seedlings would be a valuable tool. Mutant alleles at flower developmental pathway loci BoAP1-a, Bo-CAL-a, and glucosinolate biosynthetic pathway locus BoGSL-ELONG have been reported to be associated with a cauliflower phenotype. We surveyed mutant alleles at these three loci in a genetically diverse sample of broccoli and cauliflower accessions from the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) Plant Genetic Resources Unit (PGRU) and the University of Warwick, Genetic Resources Unit of Warwick HRI (HRI). Phenotypic and genotypic data were collected for multiple plants per accession during two field seasons. Simple genetic models assuming dominance or codominance of alleles were analyzed. Goodness-of-fit tests rejected the null model that the mutant genotype was associated with a cauliflower phenotype. A correlation analysis showed that BoAP1-a and BoCAL-a alleles or loci were significantly correlated with phenotype but the fraction of variation explained was low, 4.4% to 6.3%. Adding BoGSL-ELONG to the analysis improved predictive power using the linear regression procedure, Maximum R-square Improvement (max R2). In the best three-variable model, only 24.8% of observed phenotypic variation was explained. Because tested genetic models did not hold robustly for the surveyed accessions, it is likely that there are multiple genetic mechanisms that influence whether the phenotype is broccoli or cauliflower. Our results in commercial cultivars indicate that other genetic mechanisms are more important in determining the horticultural type than are BoAP1-a and BoCAL-a.

2002 ◽  
Vol 53 (8) ◽  
pp. 865 ◽  
Author(s):  
S. S. Quisenberry ◽  
S. L. Clement

Insect and mite damage accounts for a significant level (30−70%) of total crop production losses. Conservation and use of plant genetic resources are required to endow crops with pest resistance, as well as to enhance crop yields and nutritional qualities. Advancements in molecular genetic technologies have the potential to facilitate the introgression of insect resistance genes from conserved and unadapted germplasm into cultivated crops. Long−term food security and the sustainability of agricultural productivity worldwide can be enhanced with the conservation and use of global plant genetic resources.


2017 ◽  
Vol 3 ◽  
pp. 49-59
Author(s):  
Bal Krishna Joshi

Agricultural biodiversity is the basis of human life and food security. Nepal with 577 cultivated species possesses huge diversity at varietal as well as landrace levels. In most agricultural crops the rapid genetic erosion due to several reasons is a common phenomenon. Thus, considering the importance of agricultural biodiversity declared by Convention on Biological Diversity for sustainable food production, National Agriculture Genetic Resources Center (NAGRC) has been established for conservation and sustainable utilization of agricultural biodiversity. This paper thus delineates the application of biotechnological tools adopted by NAGRC for effective and efficient conservation and use of agricultural plant genetic resources (APGRs). Among the adopted technologies, tissue bank using shoot tip culture of vegetatively propagating and recalcitrant crops eg potato, sugarcane, banana, sweet potato, etc are in function. Under the molecular marker technology, currently random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers have been used for developing DNA profiles, identifying duplicates in the collections, assessing genetic diversity and screening accessions against economic traits. DNA bank has also been created for storing DNA of indigenous crops and these DNA can be accessed for research and study. Genotypic database has been developed for chayote, finger millet, wheat and maize for identification and selection of the accessions.Journal of Nepal Agricultural Research Council Vol.3 2017: 49-59


2004 ◽  
Vol 55 (3) ◽  
pp. 307 ◽  
Author(s):  
Charles Lawson

A key controversy in negotiating the International Treaty on Plant Genetic Resources for Food and Agriculture, and the likely long-term effectiveness of the agreement, is the way in which the intellectual property provisions are interpreted and applied to the key genetic resources forming the Consultative Group on International Agricultural Research (CGIAR) system of International Agricultural Research Centres' (IARC) collections. This paper reviews the intellectual property provisions in the treaty and examines the likely consequences from patenting under the Patents Act 1990 over materials derived from these collections. The consequence is argued to be significant and, over time, these practices are likely to deplete the usefulness of these collections and undermine the relevance of the treaty. The paper concludes that Australia's interests might best be served by arguing that access to these collections, and the other materials under the treaty, be subject to a non-exclusive, royalty free licence for any use of the derived materials to develop useful new plant varieties.


CORD ◽  
2005 ◽  
Vol 21 (02) ◽  
pp. 34
Author(s):  
Pons Batugal

The International Coconut Genetic Resources Network (COGENT) is a global research network organized by the International Plant Genetic Resources Institute (IPGRI) in 1992 with support from member countries, the Consultative Group on International Agricultural Research (CGIAR), partner institutions, donor agencies, and by regional and international development organizations.                           In the last 12 years, COGENT has been fully operational with 38 member coconut producing countries in five regions (South Asia; Southeast and East Asia; South Pacific; Africa and the Indian Ocean; and Latin America and the Caribbean). It has successfully developed and disseminated to coconut breeders and curators worldwide the International Coconut Genetic Resources Database (CGRD). The CGRD contains characterization data and some pictures of 1,416 accessions which are conserved by national programmes in 28 sites in 23 countries. To further secure conserved germplasm, a COGENT multi-site International Coconut Genebank has been established to conserve 200 important accessions in each region. Coconut varieties with multi-purpose uses are being identified, documented and promoted. The performance of promising 38 high-yielding hybrids are being evaluated in a multilocation  trial involving four African and three Latin America/Caribbean countries to identify suitable varieties and hybrids for resource-poor farmers. Farmers’ varietal preferences in 15 countries are being evaluated. Diversity-linked income-generating activities are being used as a strategy to promote in situ and on-farm conservation and germplasm utilization have been initiated in 15 countries. Protocols for in vitro embryo culture, cryopreservation, morphometric and molecular marker-based methods for locating and characterizing diversity; pest risk assessment and germplasm health management are being developed, tested and upgraded. Strategies and techniques for farmer participatory research, collecting, characterization and ex situ and in situ conservation are being refined.   To strengthen the coconut research capability of COGENT member countries, the COGENT Secretariat and IPGRI have organized 39 country need assessment missions  and conducted 41 workshops and meetings involving 994 coconut researchers to share information and technologies, discuss issues and common problems and opportunities and how to address them; conducted 40 training courses involving 765 participants from 41 countries; supported 274  research and training/capacity building activities  in 30 countries; and led the establishment of the Global Coconut Research for Development Programme (PROCORD). IPGRI and COGENT's current priority involves the further promotion of more effective conservation and use of coconut genetic resources, both regionally and globally.


HortScience ◽  
2011 ◽  
Vol 46 (11) ◽  
pp. 1440-1443
Author(s):  
Kim E. Hummer

The U.S. Department of Agriculture (USDA), Agricultural Research Service, National Clonal Germplasm Repository in Corvallis was established as the U.S. National Plant Germplasm System's berry genebank in 1981. Since then, the USDA has sponsored numerous explorations throughout the United States and foreign countries to obtain berry plant genetic resources. Species of Fragaria L. (strawberries), Ribes L. (currants and gooseberries), Rubus L. (raspberries and blackberries), and Vaccinium L. (blueberries and cranberries) are native to both domestic and international localities. With limited gene pools for cultivated strawberries, raspberries, and blackberries, expeditions have provided a wealth of genetic resources to expand opportunities for breeders to develop new cultivars. Particularly given the diverse species inherent in the development of cultivated blueberries, these trips have discovered unusual new blueberry relatives and forms available for expanding the range of production, increasing plant yields, and improving fruit antioxidant content. Along the way, new fruit species and new uses for known species were observed. Gathering the bounty of the world's berries resulted in encounters with diverse fauna, from snakes, bears, and bison to butterflies, mosquitoes, ticks, and chiggers. Avenging Toxicodendron species have added their mark on intrepid explorers. Remote sites with nothing but clear night stars and the satellite markers on the global positioning system offer radiant beauty and an abiding hope for the conservation of plant genetic diversity for all people for all time.


2016 ◽  
Vol 4 ◽  
pp. 75-91 ◽  
Author(s):  
M N Paudel ◽  
B K Joshi ◽  
K H Ghimire

Agricultural plant genetic resources (APGRs) are one of the pivotal sources for developing high yielding, stress tolerance varieties to sustain food and nutritional security of the world. Nepal has established National Agriculture Genetic Resource Centre (NAGRC), alias Genebank under the Nepal Agricultural Research Council (NARC) in Khumaltar premise in 2010 AD (2066 BS). NAGRC has been doing collection, identification, characterization, and regeneration of APGRs since its establishment. There are more than 11000 collections of APGRs in the Genebank. These accessions include cereals, pseudo cereals, pulses, oilseeds and vegetable of orthodox seed whereas crops having recalcitrant seed are conserved in the field Genebank, on-farm genebank and tissue bank. To analyze characters of new accessions, standard passport data are recorded and entered to accessions giving geographical locations and coordinates. The APGRs have been collected, cleaned, processed, preserved and regenerated and characterized according to the standard procedures and norms used by scientists across the world. Types of Genebank and options for effective management of APGRs in Nepal have explained in brief. This paper tries to explain the importance and management of APGRs with respect to sustain food and nutritional security of Nepal in coming days ahead.Agronomy Journal of Nepal (Agron JN) vol. 4, 2016, Page: 75-91


Author(s):  
M. K. Srivastava

Security of any country as well as the whole world can be ensure through the conservation of germplasm since they are genetic resources that can be used to prolong a population of an organism. Plant genetic resources (PGR) are the foundation of agriculture as well as food and nutritional security. The ICAR-NBPGR is key institution at national level for management of PGR in India under Indian Council of Agricultural Research (ICAR), New Delhi. India being rich in both flora and fauna germplasm diversity also have challenge of protecting its natural heritage. At the same time, we also have mutually beneficial strategies for germplasm exchange with other countries. The National Bureau of Plant Genetic Resources (NBPGR) activities include PGR exploration, collection, exchange, characteri- zation, evaluation, conservation and documentation. It also perform the responsibility to carry out quarantine of all imported PGR. NBPGR collects and acquires germplasm from various sources, conserves it in the Genebank, characterizes and evaluates it for different traits and provides ready material for breeders to develop varieties for farmers. At present, the National Genebank conserves more than 0.45 million accessions. NBPGR is responsible for identifying trait-specific pre-adapted climate resilient genotypes, promising material with disease resistance and quality traits which the breeders use for various crop improvement programmes. The prime focus area of research of NBPGR at present is is on characterization of ex situ conserved germplasm and detailed evaluation of prioritized crops for enhanced utilization. identification of novel genes and alleles for enhanced utilization of PGR; identification and deployment of germplasm/landraces.


1992 ◽  
Vol 28 (1) ◽  
pp. 89-98 ◽  
Author(s):  
S. Ceccarelli ◽  
J. Valkoun ◽  
W. Erskine ◽  
S. Weigand ◽  
R. Miller ◽  
...  

SummaryThis paper addresses the current and future contributions of plant genetic resources and plant improvement to sustainable agriculture with reference to the activities of the International Center for Agricultural Research in the Dry Areas (ICARDA) in association with national programmes in West Asia and North Africa. These regions constitute the primary centres of diversity of crops such as wheat, barley, chickpea and lentil. Genetic erosion is being curtailed by germplasm collection and preservation. Selection for low-input cultivars of barley is conducted under low input conditions, and new cultivars of lentil and barley are often intentionally heterogeneous to stabilize their performance in dry rainfed areas. The importance of genetic differences in the cultivars on subsequent crops in the rotation and on straw quality for livestock is under study. Insect pests and diseases contribute to yield instability. Because of the potential adverse impact of pesticides on the fragile ecosystems of the region, integrated control strategies based on agronomic management, host plant resistance, biological control agents and strategic use of selective insecticides are being developed.


Author(s):  
Rodomiro Ortiz

Substantial and sustainable increases in productivity of all crops are needed to meet the predicted demand for food, feed, fibres, flowers, fuels, fun, feed-stocks and pharmaceuticals of this 21st century bio-based economy. Plant breeding is vital for protecting the yield gains made to date, and for further increasing the genetic yield potential of all crops. As a result of the Green Revolution, global productivity of the main food staples steadily rose since the 1960s. Such achievements ensued from crop genetic enhancement partnerships. They are models for illustrating partnering for exchange, evaluation, release and use of plant genetic resources worldwide. These partnerships include national agricultural research institutes and international agricultural research centres. For many decades the global wheat yield increased due to an effective International Wheat Improvement Network (IWIN), which deployed cutting-edge science alongside practical multi-disciplinary applications, resulting in the development of bred-germplasm that has improved food security and the livelihoods of farmers in the developing world. IWIN operates field evaluation trials in more than 250 locations of 100 countries for testing breeding wheat lines across many environments. The International Network for Genetic Evaluation of Rice (INGER) has become an integral component of rice breeding programmes: every year partners provide about 1000 genetically diverse breeding lines, which have been grown in about 600 experiment stations from 80 countries. The Latin American Maize Programme (LAMP) has assessed national germplasm, facilitated the exchange of genetic resources across the continent, and its core subset has been made available to encourage further use in broadening maize genetic resources. For example, the Germplasm Enhancement of Maize (GEM) project has used LAMP-selected landraces in crosses with elite temperate maize lines provided by North American private companies, to introgress useful genetic diversity into US maize germplasm, with the aim to broaden the genetic base of “corn-belt” hybrids.


Sign in / Sign up

Export Citation Format

Share Document