scholarly journals From Villous Strawberry Shams to Hairy Huckleberries: The Wild Side of Berry Exploration

HortScience ◽  
2011 ◽  
Vol 46 (11) ◽  
pp. 1440-1443
Author(s):  
Kim E. Hummer

The U.S. Department of Agriculture (USDA), Agricultural Research Service, National Clonal Germplasm Repository in Corvallis was established as the U.S. National Plant Germplasm System's berry genebank in 1981. Since then, the USDA has sponsored numerous explorations throughout the United States and foreign countries to obtain berry plant genetic resources. Species of Fragaria L. (strawberries), Ribes L. (currants and gooseberries), Rubus L. (raspberries and blackberries), and Vaccinium L. (blueberries and cranberries) are native to both domestic and international localities. With limited gene pools for cultivated strawberries, raspberries, and blackberries, expeditions have provided a wealth of genetic resources to expand opportunities for breeders to develop new cultivars. Particularly given the diverse species inherent in the development of cultivated blueberries, these trips have discovered unusual new blueberry relatives and forms available for expanding the range of production, increasing plant yields, and improving fruit antioxidant content. Along the way, new fruit species and new uses for known species were observed. Gathering the bounty of the world's berries resulted in encounters with diverse fauna, from snakes, bears, and bison to butterflies, mosquitoes, ticks, and chiggers. Avenging Toxicodendron species have added their mark on intrepid explorers. Remote sites with nothing but clear night stars and the satellite markers on the global positioning system offer radiant beauty and an abiding hope for the conservation of plant genetic diversity for all people for all time.

2012 ◽  
Vol 11 (2) ◽  
pp. 106-113 ◽  
Author(s):  
Dilip R. Panthee ◽  
Joanne A. Labate ◽  
Larry D. Robertson

Flavour is one of the most highly demanded consumer traits of tomato at present; poor flavour is one of the most commonly heard complaints associated with modern varieties of tomato. In order to combine flavour with other desirable fruit traits in improved cultivars, it is important to determine how much variability exists in the crucial compounds that contribute most to flavour. The objective of the present study was to determine the variability of flavour-contributing components including total soluble solids (TSS) and total titratable acids (TTA) among other subjective traits related to flavour in a core collection of tomato accessions. The core collection was comprised of 173 tomato accessions with a wide genetic background from the United States Department of Agriculture (USDA), Agricultural Research Services (ARS) Plant Genetic Resources Unit repository. The TTA varied from 0.20 to 0.64%, whereas the TSS ranged from 3.4 to 9.0%, indicating the availability of broad variation for these traits. Rinon (PI 118783), Turrialba, Purple Calabash and LA2102 were among the high TTA (>0.45%) containing accessions, whereas those with high TSS (>7.0%) were AVRDC#6, Sponzillo and LA2102. A positive correlation of overall flavour with TTA (r= 0.33; P< 0.05) and TSS (r= 0.37; P< 0.05) indicated that these two components play an important role in determining the overall flavour in tomato. Subjectively measured other traits including fruity odour and fruity flavour had positive correlations with overall flavour. Overall flavour is discussed in the context of other traits including fruit firmness. Information obtained from this study may be useful for tomato breeders aiming to improve tomato flavour.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 993A-993 ◽  
Author(s):  
Kim E. Hummer ◽  
Tom Davis ◽  
Hiroyuki Iketani ◽  
Hiroyuki Imanishi

Genetic resources of temperate berry crops were collected 7 to 27 July 2004 in Hokkaido, Japan, under a bilateral agreement between the United States and Japan. This expedition was a collaborative effort between the United States Department of Agriculture (USDA), the Japanese Ministry of Agriculture, Forestry and Fisheries (MAFF), the University of New Hampshire, and Akita Prefectural College of Agriculture, Japan. Additional assistance was provided by the Hokkaido Governmental Plant Genetic Resources Center, several Forest Research Stations of the Hokkaido University, and private botanists. The expedition obtained 100 accessions encompassing eight genera and 29 species. In all, 84 seedlots, and 23 plants were obtained. The genera collected included: Actinidia, Fragaria, Lonicera, Morus, Ribes, Rubus, Sambucus, and Vaccinium. Plant and seed accessions from this trip are preserved and distributed from the USDA ARS National Clonal Germplasm Repository in Corvallis, Ore., and from MAFF. The target genus for this expedition was Fragaria, so the trip was planned for July. Multiple samples of the two Japanese diploid strawberry species, Fragaria iinumae Makino and F. nipponica Makino (synonym = F. yezoensis H. Hara) were obtained during their prime ripening time. Ribes, Rubus, and Vaccinium fruits ripened later in the summer, but were collected when fruit were observed. Unfortunately, seeds of some of these accessions proved to be immature or nonviable upon extraction. We suggest that expeditions to collect these genera should be planned for late August. Morphological and molecular evaluation of collected germplasm is underway at the USDA ARS Corvallis Repository and at the University of New Hampshire.


HortScience ◽  
2015 ◽  
Vol 50 (2) ◽  
pp. 205-210
Author(s):  
Kim E. Hummer ◽  
Chad E. Finn ◽  
Michael Dossett

Luther Burbank, the quintessential nurseryman of the early 20th century, remarked that small fruit was the “Cinderella of the pomological family.” He stated that although tree fruits had been improved to the point of an almost uncountable number of cultivars, it was the time and responsibility of his generation and those to follow to develop the small fruit for human consumption. Burbank had a penchant for detecting potential qualities of unusual plants and his broad association with plant explorers at the U.S. Department of Agriculture and elsewhere allowed him to examine diverse wild berry species. He obtained seeds of many small fruit species from throughout the world. He made wide crosses within and between these genera and species. Burbank selected and named many cultivars to be introduced through his nursery and elsewhere. He named and released ≈40 blackberries, raspberries (Rubus L.), and strawberries (Fragaria L.); four grapes (Vitis L.); and a hybrid Solanum that he named ‘Sunberry’. He sometimes exaggerated their descriptions for promotion or public recognition. For example, Rubus ×loganobaccus ‘Phenomenal’ was, he stated, “far superior in size, quality, color, and productivity…” to ‘Loganberry’. Unfortunately, this cultivar was not a commercial success. Burbank made a few crosses and sold what he considered to be improved species, e.g., ‘Himalaya Giant’ blackberry (R. armeniacus). He created new common names for foreign species, e.g., balloon berry (R. illecebrosus) and Mayberry (R. palmatus), to better market them. However, his amazingly keen observations of thornlessness, pigment diversity, and recognition of repeat flowering and fruiting in blackberries, raspberries, and strawberries, were insightful of the needs of future industry. Burbank was a disciple of Darwin and his theory of natural selection. Burbank’s classic breeding approach, to make wide crosses, produce large numbers of hybrid seedlings, choose significant seedlings with his traits of choice, and backcross to the desired parent for several generations, was successful, although he did not know of ploidy or gene recombination. Unfortunately, the ‘Himalaya blackberry’, now ubiquitous in hedgerows and fields throughout the Pacific Northwest in the United States, is designated as a federal noxious weed. Although not presently in commercial production, three of his Rubus cultivars (‘Burbank Thornless’, ‘Snowbank’, and ‘Phenomenal’) are preserved in the U.S. Department of Agriculture, National Clonal Germplasm Repository, in Corvallis, OR.


2010 ◽  
Vol 8 (2) ◽  
pp. 182-188 ◽  
Author(s):  
Theo van Hintum ◽  
Helmut Knüpffer

Taxonomy plays an essential role in genebank documentation. It is often the first level at which users search material, and it determines the protocols used in the management of collections. Especially, when plant genetic resources information is pooled in systems such as EURISCO, the European catalogue of ex situ plant genetic resources, problems regarding technical handling of taxonomic nomenclature, such as lack of standardization and low quality of data, become apparent. These problems were studied by analysing the content of EURISCO and mapping the taxon names in EURISCO on those used in the United States Department of Agriculture genebank system GRIN-Tax. Thus, the number of spelling errors and the level of standardization could be quantified and improved. An analysis of the content of EURISCO was made, showing a highly unbalanced distribution over crops: 50% of the accessions belong to ten genera only. Mapping EURISCO on the crops listed in Annex 1 of the International Treaty on Plant Genetic Resources for Food and Agriculture showed that 67% of the accessions in EURISCO belong to crops in that list.


2002 ◽  
Vol 65 (3) ◽  
pp. 567-570 ◽  
Author(s):  
JOHN B. LUCHANSKY ◽  
ANNA C. S. PORTO ◽  
F. MORGAN WALLACE ◽  
JEFFREY E. CALL

This study compared three methods for the recovery of Listeria monocytogenes from commercially prepared and vacuum-packaged frankfurters that were inoculated with a five-strain mixture of this pathogen at averages of 22 and 20,133 CFU per package over three trials. The presence and levels of the pathogen were determined by (i) the U.S. Department of Agriculture (USDA) Food Safety and Inspection Service (FSIS) product composite enrichment method, involving the selective enrichment of a 25-g composite of product and the subsequent plating of this product onto selective agar plates; (ii) the USDA Agricultural Research Service (ARS) product composite rinse method, involving the rinsing of a 25-g composite of product with 0.1% peptone water and the subsequent plating of a portion of the rinse fluid directly onto selective agar plates; and (iii) the USDA-ARS package rinse method, involving the use of 25 ml of 0.1% peptone water to rinse the entire contents of a package and the subsequent plating of a portion of the rinse fluid directly onto selective agar plates. For packages inoculated with 20,133 CFU, L. monocytogenes was recovered at a frequency (percentage of packages positive) of 100% by each of the three methods. The pathogen was recovered at efficiencies (percentages of recovery of L. monocytogenes) of 43 and 94% with the USDA-ARS product rinse method and the USDA-ARS package rinse method, respectively. For packages inoculated with 22 CFU, L. monocytogenes was recovered at frequencies of 17, 10, and 100% by the USDA-FSIS product composite enrichment method, the USDA-ARS product composite rinse method, and the USDA-ARS package rinse method, respectively. The pathogen was recovered at efficiencies of 20 and 95% with the USDA-ARS product composite rinse method and the USDA-ARS package rinse method, respectively. In a related study, the USDA-ARS package rinse method was the only method that detected the pathogen in 60 packages from each of five brands of frankfurters purchased from local grocery stores. These data establish that the USDA-ARS package rinse method is markedly more sensitive, as well as demonstrably more rapid and facile, than either the approved USDA-FSIS product composite enrichment method or the USDA-ARS product composite rinse method in determining the presence or absence of L. monocytogenes and establishing the levels of the pathogen that may be on the surface of ready-to-eat foods such as frankfurters.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 737
Author(s):  
Cory M. Payne ◽  
Jeffrey E. Passner ◽  
Robert E. Dumais ◽  
Abdessattar Abdelkefi ◽  
Christopher M. Hocut

To investigate synoptic interactions with the San Andres Mountains in southern New Mexico, the Weather Research and Forecasting (WRF) model was used to simulate several days in the period 2018–2020. The study domain was centered on the U.S. Department of Agriculture (USDA) Agricultural Research Service’s Jornada Experimental Range (JER) and the emphasis was on synoptic conditions that favor strong to moderate winds aloft from the southwest, boundary layer shear, a lack of moisture (cloud coverage), and modest warming of the surface. The WRF simulations on these synoptic days revealed two distinct regimes: lee waves aloft and SW-to-NE oriented Longitudinal Roll Structures (LRS) that have typical length scales of the width of the mountain basin in the horizontal and the height of the boundary layer (BL) in the vertical. Analysis of the transitional periods indicate that the shift from the lee wave to LRS regime occurs when the surface heating and upwind flow characteristics reach a critical threshold. The existence of LRS is confirmed by satellite observations and the longitudinal streak patterns in the soil of the JER that indicate this is a climatologically present BL phenomenon.


HortScience ◽  
2018 ◽  
Vol 53 (11) ◽  
pp. 1560-1561 ◽  
Author(s):  
Lisa L. Baxter ◽  
Brian M. Schwartz

Bermudagrass (Cynodon spp.) is the foundation of the turfgrass industry in most tropical and warm-temperate regions. Development of bermudagrass as a turfgrass began in the early 1900s. Many of the cultivars commercially available today have been cooperatively released by the U.S. Department of Agriculture Agricultural Research Service (USDA-ARS) and the University of Georgia at the Coastal Plain Experiment Station in Tifton, GA.


2003 ◽  
Vol 1 (1) ◽  
pp. 11-18 ◽  
Author(s):  
M. O. Humphreys

AbstractUK agriculture is undergoing significant change with reduced subsidies for food production, increasing consumer demands for food safety and traceability, and environmental concerns including climate and demographic change. The International Treaty on Plant Genetic Resources for Food and Agriculture adopted by the United Nations Food and Agriculture Organisation supports the use of genetic resources for research and breeding. Mining genetic resources for useful genetic variation is perceived as a major benefit of genebanks. However, utilization by breeders may be constrained by poor characterization of genetic resources, a widening gap between improved and unimproved material, and the disruption of well- adapted genotypes during introgression. Breeders working with grasses and forage legumes for sustainable agriculture are fortunate in the wealth of genetic variation available both within the primary species of interest and among related species. New DNA technologies allow more targeted approaches to the use of these genetic resources. Possibilities for gene transfer between related species using conventional techniques expand the available gene pools while potential use of genetic transformation extend these even further.


Sign in / Sign up

Export Citation Format

Share Document