scholarly journals Salinity Tolerance and Leaf Water Use Efficiency in Citrus

2010 ◽  
Vol 135 (1) ◽  
pp. 33-39 ◽  
Author(s):  
James P. Syvertsen ◽  
Juan C. Melgar ◽  
Francisco García-Sánchez

In three separate experiments, the growth and water use of salinized citrus rootstock seedlings and grafted trees were modified using different growth substrates, elevated CO2, or 50% shade screen under field conditions. By reanalyzing previously published data, we tested the hypothesis that salinity tolerance in citrus can be characterized as the ability to maintain low levels of leaf Cl− accumulation through high plant growth and high water use efficiency (WUE) under saline conditions. Well-irrigated salinized seedlings of the relatively salt-sensitive Carrizo citrange [Carr (Citrus sinensis × Poncirus trifoliata)] were grown in sand, clay, or a peat-based soilless media. Salinity stress reduced plant growth and water use. Leaf Cl− concentration was negatively related to plant growth, but leaf Cl− increased with transpiration rate in low-saline treatments. In a second experiment using salinized seedlings of the relatively salt-tolerant Cleopatra mandarin [Cleo (Citrus reticulata)] grown along with Carr seedlings with or without elevated CO2, leaf Cl− was negatively related to growth and to shoot/root dry weight ratio, but was positively related to water use such that leaf Cl− was negatively related to leaf WUE. In a third experiment using salinized 2-year-old ‘Valencia’ orange (C. sinensis) trees grafted on Cleo or Carr rootstocks and grown with or without shadecloth, leaf Cl− was positively related to leaf transpiration as both were higher in the spring than in the fall, regardless of rootstock or shade treatment. Overall, leaf Cl− was positively related to water use and was negatively related to leaf WUE. High growth, low water use, and consequently, high WUE of salinized citrus were related to low leaf Cl−. Such relationships can be used as indicators of salinity tolerance.

2006 ◽  
Vol 131 (1) ◽  
pp. 24-31 ◽  
Author(s):  
Francisco García-Sánchez ◽  
J.P. Syvertsen

Three-month-old citrus rootstock seedlings of the Cl- excluder Cleopatra mandarin (Citrus reticulata Blanco) and the Cl- accumulator Carrizo citrange [C. sinensis (L.) Osb. × Poncirus trifoliata L.] were fertilized with nutrient solution with or without additional 50 mm NaCl and grown at either ambient CO2 (360 μL·L-1) or elevated CO2 (700 μL·L-1) in similar controlled environment greenhouses for 8 weeks. Elevated CO2 increased plant growth, shoot/root ratio, leaf dry weight per area, net assimilation of CO2, chlorophyll, and water-use efficiency but decreased transpiration rate. Elevated CO2 decreased leaf Ca2+ and N concentration in non-salinized Cleopatra. Salinity increased leaf Cl- and Na+ in both genotypes. Carrizo had higher concentrations of Cl-but lower Na+ in leaves than Cleopatra. Salinity decreased plant growth, shoot/root ratio, net gas exchange, water use, and root Ca+2 but increased root N in both genotypes regardless of CO2 level. Neither salinity nor elevated CO2 affected leaf chlorophyll fluorescence (Fv/Fm). Carrizo had higher Fv/Fm, leaf gas exchange, chlorophyll, N, and Ca2+ than Cleopatra. Salinity-induced decreases in leaf osmotic potential increased leaf turgor especially at elevated CO2. The increase in leaf growth at elevated CO2 was greater in salinized than in nonsalinized Carrizo but was similar in Cleopatra seedlings regardless of salt treatment. In addition, salinity decreased water-use efficiency more at elevated CO2 than at ambient CO2 in Cleopatra but not in Carrizo. Elevated CO2 also decreased leaf Cl- and Na+ in Carrizo but tended to increase both ions in Cleopatra leaves. Based on leaf growth, water-use efficiency and salt ion accumulation, elevated CO2 increased salinity tolerance in the relatively salt-sensitive Carrizo more than in the salt-tolerant Cleopatra. In salinized seedlings of both genotypes, Cl- and Na+ concentration changes in response to eCO2 in leaves vs. roots were generally in opposite directions. Thus, the modifications of citrus seedling responses to salinity by the higher growth and lower transpiration at elevated CO2 were not only species dependent, but also involved whole plant growth and allocations of Na+ and Cl-.


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Wafaa Abd El-Bary ◽  
Mahmoud Hegazi ◽  
Khaled El-Bagoury ◽  
Wael Sultan ◽  
Manal Mubarak

2021 ◽  
Vol 9 (11) ◽  
pp. 2398
Author(s):  
Ibraheem Olamide Olasupo ◽  
Qiuju Liang ◽  
Chunyi Zhang ◽  
Md Shariful Islam ◽  
Yansu Li ◽  
...  

Agronomic biofortification of horticultural crops using plant growth-promoting rhizobacteria (PGPR) under crop residue incorporation systems remains largely underexploited. Bacillus subtilis (B1), Bacillus laterosporus (B2), or Bacillus amyloliquefaciens (B3) was inoculated on soil containing chili residue, while chili residue without PGPR (NP) served as the control. Two hybrid long cayenne peppers, succeeding a leaf mustard crop were used in the intensive cultivation study. Net photosynthesis, leaf stomatal conductance, transpiration rate, photosynthetic water use efficiency, shoot and root biomass, and fruit yield were evaluated. Derivatives of folate, minerals, and nitrate contents in the pepper fruits were also assessed. B1 elicited higher net photosynthesis and photosynthetic water use efficiency, while B2 and B3 had higher transpiration rates than B1 and NP. B1 and B3 resulted in 27–36% increase in pepper fruit yield compared to other treatments, whereas B3 produced 24–27.5% and 21.9–27.2% higher 5-methyltetrahydrofolate and total folate contents, respectively, compared to B1 and NP. However, chili residue without PGPR inoculation improved fruit calcium, magnesium, and potassium contents than the inoculated treatments. ‘Xin Xian La 8 F1’ cultivar had higher yield and plant biomass, fruit potassium, total soluble solids, and total folate contents compared to ‘La Gao F1.’ Agronomic biofortification through the synergy of Bacillus amyloliquefaciens and chili residue produced better yield and folate contents with a trade-off in the mineral contents of the greenhouse-grown long cayenne pepper.


1999 ◽  
Vol 79 (4) ◽  
pp. 627-637 ◽  
Author(s):  
D. A. Twerdoff ◽  
D. S. Chanasyk ◽  
M. A. Naeth ◽  
V. S. Baron ◽  
E. Mapfumo

To maintain a sustainable agricultural system, management practices such as grazing must ensure adequate soil water for plant growth, yet minimize the risk of soil erosion. The objective of this study was to characterize the soil water regime of perennial and annual forages under three grazing intensities (heavy, medium and light). The study was conducted at the Lacombe Research Station, Alberta, on an Orthic Black Chernozem of loam to silt loam texture. The forages used were smooth bromegrass (Bromus inermis L. 'Carlton'), meadow bromegrass (Bromus riparius L. 'Paddock'), a mixture of triticale (X Triticosecale Wittmack 'Pika') and barley (Hordeum vulgare L. 'AC Lacombe') and triticale. Soil water measurements were conducted between April and October of 1994 and 1995 using a neutron scattering hydroprobe to a depth of 90 cm. Surface (0–7.5 cm) soil water was more responsive to grazing intensity than soil water accumulated to various depths. For all grazing treatments and forages, both surface soil water and accumulated soil water generally fluctuated between field capacity and wilting point during the growing season. Although plant water status was not determined, no visual permanent wilting of forages was observed during the study. Differences in evapotranspiration (ET), as determined by differences in soil water were evident among forage species but not grazing intensities, with perennials having high ET in spring and annuals having high ET in summer. Estimated values of water-use efficiency (WUE) were greater for perennials than for annuals and grazing effects on WUE were minimal. From a management perspective, grazing of annuals and perennials altered soil water dynamics but still maintained adequate soil water for plant growth. Key words: Evapotranspiration, forages, grazing intensity, water-use efficiency


Sign in / Sign up

Export Citation Format

Share Document