scholarly journals Transcriptome Analyses of Pre-parasitic and Parasitic Meloidogyne Chitwoodi Race 1 to Identify Putative Effector Genes

2021 ◽  
Vol 53 ◽  
pp. 1-13
Author(s):  
Lei Zhang ◽  
Cynthia Gleason
Plant Disease ◽  
2007 ◽  
Vol 91 (8) ◽  
pp. 1051-1051 ◽  
Author(s):  
H. Mojtahedi ◽  
C. R. Brown ◽  
E. Riga ◽  
L. H. Zhang

Meloidogyne chitwoodi Golden et al. is a serious pest of potato (Solanum tuberosum L.), and is widespread in the Pacific Northwest United States. M. chitwoodi is currently reported to consist of two host races and one pathotype (2,3) that are not distinguished morphologically. Host race 1 reproduces on Chantenay carrot but not on Thor alfalfa and host race 2 reproduces on alfalfa but not on carrot. Both races fail to reproduce on roots of S. bulbocastanum, a wild potato species used as a source of resistance in our breeding program (1). The resistance to race 1 in S. bulbocastanum is attributed to Rmc1(blb) gene. Pathotype 1 of race 2 breaks resistance and reproduces on S. bulbocastanum (2). We have tested resistant breeding lines repeatedly in Prosser, WA field plots infested with MC race 1 and harvested tubers free from M. chitwoodi damage. In 2004 however, tubers of some resistant lines were damaged by the M. chitwoodi population that did not cause damage in the past. Populations of M. chitwoodi were established on tomato by adding peels obtained from the infected tubers of resistant lines. The reproductive factor, final number of eggs ÷ initial inoculum, of the new population was determined on five replications of 3-week-old Chantenay carrot and Thor alfalfa. Five thousand eggs were extracted from nematode cultures reared on tomatoes and then were added around the root system of the test plants. The plants were maintained in the greenhouse for 55 days before the nematode eggs were extracted and RF (reproductive factor = final/initial population) values determined. Like the MC race 1, new populations reproduced on Chantenay carrot (RF > 1) but failed to reproduce on Thor alfalfa (RF < 0.1). Unlike MC race 1, the new populations reproduced on roots of all breeding lines that carried Rmc1(blb) gene (RF > 1). These results suggest that the selected population of M. chitwoodi in the Prosser site is a new pathotype, which is designated pathotype 1 of MC race 1. References: (1) C. R. Brown et al. Am. J. Potato Res. 83:1, 2006. (2) H. Mojtahedi et al. J. Nematol. 30:506, 1998. (3) G. S. Santo et al. Plant Dis. 69:361, 1985.


2010 ◽  
Vol 48 (01) ◽  
Author(s):  
IA Malik ◽  
N Naz ◽  
F Moriconi ◽  
F Moriconi ◽  
B Baumgartner ◽  
...  

Crop Science ◽  
1990 ◽  
Vol 30 (3) ◽  
pp. 728-734 ◽  
Author(s):  
S. J. Wolf ◽  
E. D. Earle
Keyword(s):  

Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 2768-2773
Author(s):  
Yonglin He ◽  
Yixue Mo ◽  
Dehong Zheng ◽  
Qiqin Li ◽  
Wei Lin ◽  
...  

Bidens pilosa is an invasive weed that threatens the growth of crops and biodiversity in China. In 2017, suspected bacterial wilt of B. pilosa was discovered in Qinzhou and Beihai, Guangxi, China. A variety of weeds are considered as reservoirs harboring bacterial wilt pathogens, but most do not show obvious symptoms in the field. Identifying the classification status of the B. pilosa bacterial wilt pathogen and exploring its geographical origin might be helpful for clarifying the role of weeds in the circulation of the disease. Phylotyping, sequevar analysis, and cross inoculation of pathogens isolated from B. pilosa and nearby peanut (Arachis hypogaea), balsam gourd (Momordica charantia), and eucalyptus (Eucalyptus robusta) plants were carried out. Three isolates of B. pilosa (Bp01, Bp02, and Bp03) were identified as Ralstonia pseudosolanacearum, race 1, biovar 3, and phylotype I, and belonged to sequevars 17 and 44, and an unknown sequevar. The sequevars isolated from B. pilosa were not completely consistent with those of the nearby hosts, and the virulence of these isolates differed when cross inoculated. The Bp03 sequevar was different from peanut isolate sequevars in the same field and was not identical to any previously designated sequevars. The isolates from B. pilosa and other nearby hosts displayed low or no virulence toward their cross hosts (with wilt incidences less than 33.33%). An exception to this was the isolates from B. pilosa, which displayed high virulence toward eucalyptus (with a wilt incidence of 70.00 to 100.00%). This is the first report of different sequevars of R. pseudosolanacearum causing typical bacterial wilt symptoms in B. pilosa in the field.


Author(s):  
Barbara Ludwig Navarro ◽  
Lucia Ramos Romero ◽  
María Belén Kistner ◽  
Juliana Iglesias ◽  
Andreas von Tiedemann

AbstractNorthern corn leaf blight (NCLB) is one of the most important diseases in maize worldwide. It is caused by the fungus Exserohilum turcicum, which exhibits a high genetic variability for virulence, and hence physiological races have been reported. Disease control is based mainly on fungicide application and host resistance. Qualitative resistance has been widely used to control NCLB through the deployment of Ht genes. Known pathogen races are designated according to their virulence to the corresponding Ht gene. Knowledge about of E. turcicum race distribution in maize-producing areas is essential to develop and exploit resistant genotypes. Maize leaves showing distinct elliptical grey-green lesions were collected from maize-producing areas of Argentina and Brazil, and 184 monosporic E. turcicum isolates were obtained. A total of 66 isolates were collected from Argentina during 2015, 2018 and 2019, while 118 isolates from Brazil were collected during 2017, 2018 and 2019. All isolates were screened on maize differential lines containing Ht1, Ht2, Ht3 and Htn1 resistance genes. In greenhouse experiments, inoculated maize plants were evaluated at 14 days after inoculation. Resistance reaction was characterized by chlorosis, and susceptibility was defined by necrosis in the absence of chlorosis. The most frequent race was 0 in both Argentina (83%) and Brazil (65%). Frequencies of race 1 (6% and 24%) and race 23N (5% and 10%) were very low in Argentina and Brazil, respectively. The high frequency of race 0 isolates provides evidence that qualitative resistance based on the tested Ht genes is not being used extensively in Argentina and Brazil to control NCLB. This information may be relevant for growers and breeding programs as the incidence of NCLB is increasing in both countries.


2021 ◽  
Vol 183 ◽  
pp. 104366
Author(s):  
Xuerong Di ◽  
Feng Zheng ◽  
Gareth J. Norton ◽  
Luke Beesley ◽  
Zulin Zhang ◽  
...  

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Elise J. Gay ◽  
Jessica L. Soyer ◽  
Nicolas Lapalu ◽  
Juliette Linglin ◽  
Isabelle Fudal ◽  
...  

Abstract Background The fungus Leptosphaeria maculans has an exceptionally long and complex relationship with its host plant, Brassica napus, during which it switches between different lifestyles, including asymptomatic, biotrophic, necrotrophic, and saprotrophic stages. The fungus is also exemplary of “two-speed” genome organisms in the genome of which gene-rich and repeat-rich regions alternate. Except for a few stages of plant infection under controlled conditions, nothing is known about the genes mobilized by the fungus throughout its life cycle, which may last several years in the field. Results We performed RNA-seq on samples corresponding to all stages of the interaction of L. maculans with its host plant, either alive or dead (stem residues after harvest) in controlled conditions or in field experiments under natural inoculum pressure, over periods of time ranging from a few days to months or years. A total of 102 biological samples corresponding to 37 sets of conditions were analyzed. We show here that about 9% of the genes of this fungus are highly expressed during its interactions with its host plant. These genes are distributed into eight well-defined expression clusters, corresponding to specific infection lifestyles or to tissue-specific genes. All expression clusters are enriched in effector genes, and one cluster is specific to the saprophytic lifestyle on plant residues. One cluster, including genes known to be involved in the first phase of asymptomatic fungal growth in leaves, is re-used at each asymptomatic growth stage, regardless of the type of organ infected. The expression of the genes of this cluster is repeatedly turned on and off during infection. Whatever their expression profile, the genes of these clusters are enriched in heterochromatin regions associated with H3K9me3 or H3K27me3 repressive marks. These findings provide support for the hypothesis that part of the fungal genes involved in niche adaptation is located in heterochromatic regions of the genome, conferring an extreme plasticity of expression. Conclusion This work opens up new avenues for plant disease control, by identifying stage-specific effectors that could be used as targets for the identification of novel durable disease resistance genes, or for the in-depth analysis of chromatin remodeling during plant infection, which could be manipulated to interfere with the global expression of effector genes at crucial stages of plant infection.


Sign in / Sign up

Export Citation Format

Share Document