The Profitability and Risk of Long-Term Cropping Systems Featuring Different Rotations and Nitrogen Rates

2008 ◽  
Vol 100 (1) ◽  
pp. 105 ◽  
Author(s):  
Trenton F. Stanger ◽  
Joseph G. Lauer ◽  
Jean-Paul Chavas
2008 ◽  
Vol 100 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Trenton F. Stanger ◽  
Joseph G. Lauer ◽  
Jean-Paul Chavas

2003 ◽  
Vol 67 (2) ◽  
pp. 637 ◽  
Author(s):  
Achmad Rachman ◽  
S. H. Anderson ◽  
C. J. Gantzer ◽  
A. L. Thompson

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 445
Author(s):  
Jessica Cuartero ◽  
Onurcan Özbolat ◽  
Virginia Sánchez-Navarro ◽  
Marcos Egea-Cortines ◽  
Raúl Zornoza ◽  
...  

Long-term organic farming aims to reduce synthetic fertilizer and pesticide use in order to sustainably produce and improve soil quality. To do this, there is a need for more information about the soil microbial community, which plays a key role in a sustainable agriculture. In this paper, we assessed the long-term effects of two organic and one conventional cropping systems on the soil microbial community structure using high-throughput sequencing analysis, as well as the link between these communities and the changes in the soil properties and crop yield. The results showed that the crop yield was similar among the three cropping systems. The microbial community changed according to cropping system. Organic cultivation with manure compost and compost tea (Org_C) showed a change in the bacterial community associated with an improved soil carbon and nutrient content. A linear discriminant analysis effect size showed different bacteria and fungi as key microorganisms for each of the three different cropping systems, for conventional systems (Conv), different microorganisms such as Nesterenkonia, Galbibacter, Gramella, Limnobacter, Pseudoalteromonas, Pantoe, and Sporobolomyces were associated with pesticides, while for Org_C and organic cultivation with manure (Org_M), other types of microorganisms were associated with organic amendments with different functions, which, in some cases, reduce soil borne pathogens. However, further investigations such as functional approaches or network analyses are need to better understand the mechanisms behind this behavior.


2003 ◽  
Vol 67 (2) ◽  
pp. 637-644 ◽  
Author(s):  
Achmad Rachman ◽  
S. H. Anderson ◽  
C. J. Gantzer ◽  
A. L. Thompson

2012 ◽  
Vol 39 ◽  
pp. 52-61 ◽  
Author(s):  
Federica Graziani ◽  
Andrea Onofri ◽  
Euro Pannacci ◽  
Francesco Tei ◽  
Marcello Guiducci
Keyword(s):  

2007 ◽  
Vol 99 (5) ◽  
pp. 1297-1305 ◽  
Author(s):  
John R. Teasdale ◽  
Charles B. Coffman ◽  
Ruth W. Mangum

2015 ◽  
Vol 146 ◽  
pp. 213-222 ◽  
Author(s):  
Cimélio Bayer ◽  
Juliana Gomes ◽  
Josiléia Accordi Zanatta ◽  
Frederico Costa Beber Vieira ◽  
Marisa de Cássia Piccolo ◽  
...  

2009 ◽  
Vol 44 (8) ◽  
pp. 949-953 ◽  
Author(s):  
Cécile Villenave ◽  
Bodovololona Rabary ◽  
Jean-Luc Chotte ◽  
Eric Blanchart ◽  
Djibril Djigal

The objective of this work was to assess the effects of conventional tillage and of different direct seeding mulch-based cropping systems (DMC) on soil nematofauna characteristics. The long-term field experiment was carried out in the highlands of Madagascar on an andic Dystrustept soil. Soil samples were taken once a year during three successive years (14 to 16 years after installation of the treatments) from a 0-5-cm soil layer of a conventional tillage system and of three kinds of DMC: direct seeding on mulch from rotation soybean-maize residues; direct seeding of maize-maize rotation on living mulch of silverleaf (Desmodium uncinatum); direct seeding of bean (Phaseolus vulgaris)-soybean rotation on living mulch of kikuyu grass (Pennisetum clandestinum). The samples were compared with samples from natural fallows. The soil nematofauna, characterized by the abundance of different trophic groups and indices (MI, maturity index; EI and SI, enrichment and structure indices), allowed the discrimination of the different cropping systems. The different DMC treatments had a more complex soil food web than the tillage treatment: SI and MI were significantly greater in DMC systems. Moreover, DMC with dead mulch had a lower density of free-living nematodes than DMC with living mulch, which suggested a lower microbial activity.


2020 ◽  
Vol 12 (3) ◽  
pp. 1062 ◽  
Author(s):  
Francis Azumah Chimsah ◽  
Liqun Cai ◽  
Jun Wu ◽  
Renzhi Zhang

Sustainable food production has long been a priority for mankind and this is being challenged by limited arable land, challenged landscapes, and higher human population growth. China started conservation farming around the 1950’s. However, main Conservation Tillage (CT) research started in 1992. Using a systematic meta-analysis approach, this review aims at examining China’s approach to CT and to characterize the main outcomes of long-term CT research across northern China. Data from organizations in charge of CT research in China showed an improvement in crop yield of at least 4% under double cropping systems and 6% under single cropping systems in dry areas of northern China. Furthermore, long-term CT practices were reported to have improved soil physical properties (soil structure, bulk density, pore size, and aggregate stability), soil nutrient levels, and reduction in greenhouse gas emission. Other benefits include significant increase in income levels and protection of the environment. Limitations to CT practice highlighted in this study include occasional reduction in crop yields during initial years of cropping, significant reduction in total N of soils, increase in N2O emission, and the need for customized machinery for its implementation. Outcomes of CT practice are ecologically and economically beneficial though its limitations are worth cogitating.


Author(s):  
Emmanuel Chiwo Omondi ◽  
Marisa Wagner ◽  
Atanu Mukherjee ◽  
Kristine Nichols

Abstract Declining nutrient densities of crops in the past 50–70 years have been attributed to unsound agricultural practices and plant breeding focus on yield rather than quality. Few studies have quantified the soil and nutritional quality of grains in organic and conventional farms and reported results are scarce and inconsistent. The Rodale Institute's Farming Systems Trial (FST) was established in 1981 to quantify the effects of long-term organic and conventional grain cropping systems and tillage practices. A 2014 study to quantify effects on the nutrient density of oat grains was integrated into three systems within the long-term trial: organic manure-based (MNR), organic legume-based (LEG), and conventional synthetic input-based (CNV), split between tilled (T) and no-till (NT) practices. Oat grains with hulls removed were analyzed for minerals (n = 24), vitamins (n = 24), amino acids (n = 24) and proteins (n = 24), while soil samples to a depth of 10 cm were analyzed for elemental minerals, and total carbon (C), nitrogen (N) and sulfur (S). Organic systems increased six out ten soil minerals whose concentrations were influenced by cropping systems: aluminum (Al), iron (Fe), chromium (Cr), calcium (Ca), barium (B) and strontium (Sr). All essential amino acids were greater in oat grains under LEG systems compared with other systems except lysine, histidine and methionine. Both LEG systems also increased 12 out of 13 non-essential amino acids in oat grains. Total oat N, C and S required for amino acid synthesis tended to be greater in organic systems. Soil N, C and S were highly correlated with total oat amino acids under organic systems compared to CNV. Organic LEG had significantly greater vitamin B1 than MNR and CNV. These results suggest that nutrient concentrations of oat grains were greater in organic systems compared to CNV systems, and the increase could be partially explained by the long-term soil management differences between the systems.


Sign in / Sign up

Export Citation Format

Share Document