Comparative Effects of Flooded and Unflooded Soil Conditions and Nitrogen Application on Growth and Nutrient Uptake by Rice Plants 1

1963 ◽  
Vol 55 (6) ◽  
pp. 565-567 ◽  
Author(s):  
M. S. Chaudhry ◽  
E. O. McLean
Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 480 ◽  
Author(s):  
Bushra Niamat ◽  
Muhammad Naveed ◽  
Zulfiqar Ahmad ◽  
Muhammad Yaseen ◽  
Allah Ditta ◽  
...  

Soil salinity and sodicity are among the main problems for optimum crop production in areas where rainfall is not enough for leaching of salts out of the rooting zone. Application of organic and Ca-based amendments have the potential to increase crop yield and productivity under saline–alkaline soil environments. Based on this hypothesis, the present study was conducted to evaluate the potential of compost, Ca-based fertilizer industry waste (Ca-FW), and Ca-fortified compost (Ca-FC) to increase growth and yield of maize under saline–sodic soil conditions. Saline–sodic soil conditions with electrical conductivity (EC) levels (1.6, 5, and 10 dS m−1) and sodium adsorption ratio (SAR) = 15, were developed by spiking soil with a solution containing NaCl, Na2SO4, MgSO4, and CaCl2. Results showed that soil salinity and sodicity significantly reduced plant growth, yield, physiological, and nutrient uptake parameters. However, the application of Ca-FC caused a remarkable increase in the studied parameters of maize at EC levels of 1.6, 5, and 10 dS m−1 as compared to the control. In addition, Ca-FC caused the maximum decrease in Na+/K+ ratio in shoot up to 85.1%, 71.79%, and 70.37% at EC levels of 1.6, 5, and 10 dS m−1, respectively as compared to the control treatment. Moreover, nutrient uptake (NPK) was also significantly increased with the application of Ca-FC under normal as well as saline–sodic soil conditions. It is thus inferred that the application of Ca-FC could be an effective amendment to enhance growth, yield, physiology, and nutrient uptake in maize under saline–sodic soil conditions constituting the novelty of this work.


2020 ◽  
Vol 25 (3) ◽  
pp. 349-355
Author(s):  
Fitri Krismiratsih ◽  
Sugeng Winarso ◽  
Slamerto Slamerto

Efforts to increase production potential can be carried out by extensification in a less productive saline land. Salinity is a major problem in the growth of most plants. Azolla is a plant that is sensitive to salinity, but if it is applied well, it can grow optimally at high salinity levels. The purpose of this study is to obtain an azolla application technique that is effective in increasing the adaptation of rice plants to NaCl saline soil conditions. The experimental design used was Randomized Block Design (RBD) with 2 factors and 3 replications. The first factor was the azolla application technique consisted of 3 levels: fresh azolla composted, fresh azolla immersed, and fresh azolla as a ground cover. The second factor was the levels of NaCl salt stress consisted of 4 levels: control DHL 0, 2, 4, and 8 dS m-1. The adaptation ability of rice plants based on variable plants height growth rate, number of tillers, strove dry weight, root dry weight, stomata density, leaf chlorophyll (SPAD), age of flowering, number of paddy grain, and harvest index. The results showed how to test content up to 2 dS m-1 which increased rice growth especially the application of azolla composted. Increasing stress to 4 and 8 dS m-1showed bad effects on vegetative, physiology, and yields of rice components. The stronger of salt stress the higher all plants growth variables except the age of flowering that actually showed the acceleration of flowering. Application of composted azolla can increase the root dry weight and azolla as a ground cover can increase the numbers of paddy grains.   Keywords: azolla, NaCl, rice, stress


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e5877 ◽  
Author(s):  
Ram B. Khadka ◽  
Norman Uphoff

Many benefits ofTrichodermainoculation for improving crop production have been documented, including growth and yield enhancement and the alleviation of biotic and abiotic stresses. However, because rice is usually cultivated under continuous flooding that creates anaerobic soil conditions, this limits the benefits of these beneficial fungi. Cultivating rice with the methods of the System of Rice Intensification (SRI) provides rice plants with a more favorable environment for their colonization by beneficial microbes in the soil because the soil is more aerobic under SRI management and contains more organic matter. This study evaluated the effects ofTrichodermainoculation of rice plants under SRI management compared with transplanted and flooded rice plants, considering also the effects of different means of fertilization and different varieties in rice. Experiments were conducted in 2015 and 2016 under the tropical climate of Nepal’s western terai (plains) during both the rainy season (July to November) and the dry season (March to July). The results indicated significantly better performance (P = 0.01) associated withTrichodermainoculation for both seasons and for both systems of crop management in terms of grain yield and other growth-contributing factors, compared to non-inoculated rice cropping. Relatively higher effects on grain yield were recorded also with organic compared to inorganic fertilization; for unimproved (heirloom) varieties compared with improved varieties; and from SRI vs. conventional flooded crop management. The yield increase withTrichodermatreatments across all trials was 31% higher than in untreated plots (4.9 vs 4.5 mt ha−1). WithTrichodermatreatment, yields compared with non-treated plots were 24% higher with organic SRI (6.38 vs 5.13 mt ha−1) and 52% higher with non-organic SRI (6.38 vs 3.53 mt ha−1). With regard to varietal differences, under SRI managementTrichodermainoculation of the improved variety Sukhadhan-3 led to 26% higher yield (6.35 vs 5.04 mt ha−1), and with the heirloom variety Tilkidhan, yield was 41% higher (6.29 vs 4.45 mt ha−1). Economic analysis indicated that expanding the organic cultivation of local landraces under SRI management should be profitable for farmers where such rice has a good market price due to its premium quality and high demand and when SRI enhances yield. These varieties’ present low yields can be significantly increased by integratingTrichodermabio-inoculation with SRI cultural methods. Other recent research has shown that such inoculation can be managed profitably by farmers themselves.


2009 ◽  
Vol 61 (3-4) ◽  
pp. 123-127 ◽  
Author(s):  
W. A. El-Tohamy ◽  
H. M. El-Abagy ◽  
S. D. Abou-Hussein ◽  
N. Gruda

2020 ◽  
Vol 44 (4) ◽  
pp. 627-636
Author(s):  
Wei Wei ◽  
Chen Ye ◽  
Hui-Chuan Huang ◽  
Min Yang ◽  
Xin-Yue Mei ◽  
...  

1991 ◽  
Vol 74 (2) ◽  
pp. 149-164 ◽  
Author(s):  
Isamu Nouchi ◽  
Osamu Ito ◽  
Yoshinobu Harazono ◽  
Kazuhiko Kobayashi

jpa ◽  
1988 ◽  
Vol 1 (3) ◽  
pp. 249-256 ◽  
Author(s):  
W. D. Gravelle ◽  
M. M. Alley ◽  
D. E. Brann ◽  
K. D. S. M. Joseph

Sign in / Sign up

Export Citation Format

Share Document