Nitrogen Management Effects on Hard Red Spring Wheat Yield and Quality

CSA News ◽  
2018 ◽  
Vol 63 (11) ◽  
pp. 9-9
2008 ◽  
Vol 100 (2) ◽  
pp. 406 ◽  
Author(s):  
B. N. Otteson ◽  
M. Mergoum ◽  
J. K. Ransom ◽  
B. Schatz

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1240
Author(s):  
Peder K. Schmitz ◽  
Joel K. Ransom

Agronomic practices, such as planting date, seeding rate, and genotype, commonly influence hard red spring wheat (HRSW, Triticum aestivum L. emend. Thell.) production. Determining the agronomic optimum seeding rate (AOSR) of newly developed hybrids is needed as they respond to seeding rates differently from inbred cultivars. The objectives of this research were to determine the AOSR of new HRSW hybrids, how seeding rate alters their various yield components, and whether hybrids offer increased end-use quality, compared to conventional cultivars. The performance of two cultivars (inbreds) and five hybrids was evaluated in nine North Dakota environments at five seeding rates in 2019−2020. Responses to seeding rate for yield and protein yield differed among the genotypes. The AOSR ranged from 3.60 to 5.19 million seeds ha−1 and 2.22 to 3.89 million seeds ha−1 for yield and protein yield, respectively. The average AOSR for yield for the hybrids was similar to that of conventional cultivars. However, the maximum protein yield of the hybrids was achieved at 0.50 million seeds ha−1 less than that of the cultivars tested. The yield component that explained the greatest proportion of differences in yield as seeding rates varied was kernels spike−1 (r = 0.17 to 0.43). The end-use quality of the hybrids tested was not superior to that of the conventional cultivars, indicating that yield will likely be the determinant of the economic feasibility of any future released hybrids.


2000 ◽  
Vol 80 (1) ◽  
pp. 123-127 ◽  
Author(s):  
R. M. DePauw ◽  
J. M. Clarke ◽  
R. E. Knox ◽  
M. R. Fernandez ◽  
T. N. McCaig ◽  
...  

AC Abbey, hard red spring wheat (Triticum aestivum L.), is adapted to the Canadian prairies. It is significantly shorter than any of the check cultivars and has solid stems. AC Abbey expressed higher grain yield, earlier maturity, and heavier kernels than AC Eatonia, the solidstem check cultivar. It is resistant to the wheat stem sawfly (Cephus cinctus Nort.) and to prevalent races of common bunt and has moderate resistance to leaf rust and stem rust. AC Abbey is eligible for grades of Canada Western Red Spring wheat. Key words: Triticum aestivum L., red spring wheat, yield, wheat stem sawfly, plant height, maturity


1969 ◽  
Vol 49 (6) ◽  
pp. 743-751 ◽  
Author(s):  
R. J. Baker

A detailed analysis of genotype-environment interactions was carried out among yields of six cultivars of hard red spring wheat grown at each of nine locations in five different years. Subdividing the sum of squares for genotype-environment interactions into components due to each cultivar indicated that the Finlay-Wilkinson method of measuring yield stability is of little value for wheat yield in western Canada. Conventional estimates of variance components due to the different types of genotype-environment interaction indicated that all except the genotype-year interaction were significant and important.


1992 ◽  
Vol 6 (2) ◽  
pp. 291-296 ◽  
Author(s):  
Dallas E. Peterson ◽  
John D. Nalewaja

Yield reductions due to green foxtail competition with hard red spring wheat varied with environment in field experiments conducted in 1984, 1985, and 1986 at Oakes, Langdon, Prosper, and Fargo, North Dakota. Wheat yield reductions ranged from 0 to 47% from 720 green foxtail plants per m2. Inclusion of early season temperature and precipitation, soil texture, and foxtail density into multiple regression analysis of wheat yield reductions significantly increased the coefficient of determination to 0.62 compared with 0.12 for regression based on green foxtail density alone. Wheat yield reduction decreased as green foxtail seeding was delayed after wheat seeding in 1986. Wheat yield generally decreased as time of diclofop application was delayed from 2 to 6 wk after wheat emergence in 1986.


2018 ◽  
Vol 110 (6) ◽  
pp. 2417-2429 ◽  
Author(s):  
Geomar M. Corassa ◽  
Fernando D. Hansel ◽  
Romulo Lollato ◽  
João L. F. Pires ◽  
Rai Schwalbert ◽  
...  

1997 ◽  
Vol 11 (3) ◽  
pp. 489-495 ◽  
Author(s):  
Beverly R. Durgan ◽  
Joseph P. Yenish ◽  
Ross J. Daml ◽  
Douglas W. Miller

Studies were conducted at Rosemount and Crookston, MN, in 1994 and 1995 to determine weed control efficacy and crop injury of F8426 (proposed common name carfentrazone-ethyl) in hard red spring wheat. F8426 alone and with 2,4-D or dicamba generally controlled common lambsquarters, kochia, and velvetleaf 90% or more at 0.026 and 0.035 kg/ha. F8426 alone and with 2,4-D or dicamba controlled Pennsylvania smartweed, wild buckwheat, and wild mustard 39 to 100% and was less consistent than control of the aforementioned species. Weed control varied little among the F8426 rates. Weed control was inconsistent between location, year, and species when F8426 was combined with crop oil concentrate, urea–ammonium nitrate solution, and nonionic surfactant. Control was more consistent when 0.28 kg/ha 2,4-D or 0.07 kg/ha dicamba was tank mixed with either F8426 rate. The best control with an F8426 treatment was similar to control from MCPA tank mixed with thifensulfuron plus tribenuron, bromoxynil, or dicamba. Weed control 30 and 45 days after treatment (DAT) was less for F8426-containing treatments than standard treatments, which likely was related to reduced crop competition after severe crop injury. Increasing F8426 rate from 0.026 to 0.035 kg/ha did not greatly increase wheat injury, whereas adding 0.28 kg/ha 2,4-D to either F8426 rate greatly increased crop injury. Wheat yield was reduced up to 63% by F8426 and 2,4-D combinations.


Sign in / Sign up

Export Citation Format

Share Document