Relationships between Soil Physicochemical, Microbiological Properties, and Nutrient Release in Buffer Soils Compared to Field Soils

2012 ◽  
Vol 41 (2) ◽  
pp. 400-409 ◽  
Author(s):  
Marc I. Stutter ◽  
Samia Richards
Ekologija ◽  
2009 ◽  
Vol 55 (2) ◽  
pp. 142-152 ◽  
Author(s):  
Irena Eitminavičiūtė ◽  
Audronė Matusevičiūtė ◽  
Valerijus Gasiūnas ◽  
Milda Radžiūtė ◽  
Neda Grendienė

2005 ◽  
Vol 69 (2) ◽  
pp. 291-300 ◽  
Author(s):  
Young-Jin Kim ◽  
Christophe J. G. Darnault ◽  
Nathan O. Bailey ◽  
J.-Yves Parlange ◽  
Tammo S. Steenhuis

1996 ◽  
Vol 34 (7-8) ◽  
pp. 237-244 ◽  
Author(s):  
Masaaki Hosomi ◽  
Tetsu Saigusa ◽  
Kenichi Yabunaka ◽  
Takuya Okubo ◽  
Akihiko Murakami

This paper describes a newly developed combined water temperature-ecological (WT-ECO) model which is employed to simulate the effects of global warming on lake and reservoir ecosystems. The WT model includes (i) variations in the eddy diffusion coefficient based on the degree of thermal stratification and the velocity of wind, and (ii) a sub-model for simulating the freezing and thawing processes of surface water, water temperatures, and the mixing rates between two adjacent layers of water. The ECO model then uses these results to calculate the resultant effect on a lake's ecological dynamics, e.g., composition of phytoplankton species, their respective concentrations, and nutrient concentrations. When the model was benchmarked against Lake Yunoko, a dimictic lake, fairly good agreement was obtained over a 4-yr period; thereby indicating it is suitably calibrated. In addition, to assess the effects of global warming on a lake ecosystem, changes in Lake Yunoko's water temperature/quality were simulated in response to an increase in air temperature of 2 - 4°C. Results indicate that such an increase will (i) increase thermal stratification in summer, which increases the nutrient concentrations in bottom water due to nutrient release from bottom sediment, (ii) increase the concentration of phytoplankton at the beginning of the autumn circulation period, and (iii) change the composition of phytoplankton species.


2020 ◽  
Vol 100 (1) ◽  
pp. 11-25 ◽  
Author(s):  
Guoyong Yan ◽  
Xiongde Dong ◽  
Binbin Huang ◽  
Honglin Wang ◽  
Ziming Hong ◽  
...  

We conducted a field experiment with four levels of simulated nitrogen (N) deposition (0, 2.5, 5, and 7.5 g N m−2 yr−1, respectively) to investigate the response of litter decomposition of Pinus koraiensis (PK), Tilia amurensis (TA), and their mixture to N deposition during winter and growing seasons. Results showed that N addition significantly increased the mass loss of PK litter and significantly decreased the mass loss of TA litter throughout the 2 yr decomposition processes, which indicated that the different responses in the decomposition of different litters to N addition can be species specific, potentially attributed to different litter chemistry. The faster decomposition of PK litter with N addition occurred mainly in the winter, whereas the slower decomposition of TA litter with N addition occurred during the growing season. Moreover, N addition had a positive effect on the release of phosphorus, magnesium, and manganese for PK litter and had a negative effect on the release of carbon, iron, and lignin for TA litter. Decomposition and nutrient release from mixed litter with N addition showed a non-additive effect. The mass loss from litter in the first winter and over the entire study correlated positively with the initial concentration of cellulose, lignin, and certain nutrients in the litter, demonstrating the potential influence of different tissue chemistries.


Sign in / Sign up

Export Citation Format

Share Document