Regulating the nutrient release rates from proteinaceous agricultural byproducts using organic amendments and its effect on soil chemical and microbiological properties

2020 ◽  
Vol 56 (6) ◽  
pp. 747-758 ◽  
Author(s):  
Bhupinder Singh Jatana ◽  
Christopher Kitchens ◽  
Christopher Ray ◽  
Nishanth Tharayil
2017 ◽  
Vol 27 (5) ◽  
pp. 639-643 ◽  
Author(s):  
Carey Grable ◽  
Joshua Knight ◽  
Dewayne L. Ingram

Although controlled-release fertilizers (CRFs) have been used in container-grown ornamental plants for decades, new coating technologies and blends of fertilizers coated for specific release rates are being employed to customize fertility for specific environments and crops. A study was conducted in the transitional climate of Kentucky to determine the nutrient release rates of three controlled-release blends of 8- to 9-month release and growth response of ‘Double Play Pink’ japanese spirea (Spiraea japonica) and ‘Smaragd’ arbovitae (Thuja occidentalis). Fertilizer 1 (16N–3.5P–8.3K–1.8Mg + trace elements) and Fertilizer 2 (18N–3.1P–8.3K–1.8Mg + trace elements) were prototype blends with different experimental polymer coatings. Fertilizer 3 was a blend of 18N–2.2P–6.6K–1.1Ca–1.4Mg–5.8S + trace elements, which combined 100% resin-coated prills with a polymer coating. Fertilizer 4 was commercially available 15N–3.9P–10K–1.3Mg–6S + trace elements. Fertilizer 3 released its nutrients earlier in the 12-week study than the other three fertilizers and resulted in lower shoot dry weight in both species. The new polymer coating technologies show promise for delivering a predicted release rate and are appropriate for container production of these woody shrubs in Kentucky. An interesting side note of this experiment was that leachate pH measurements across treatments averaged 1.2 units lower for arbovitae (6.3) than for japanese spirea (7.5) at week 12. It was assumed that chemical and/or biological reactions at the root/substrate interface in arbovitae moderated pH increases over the study.


1981 ◽  
Vol 38 (8) ◽  
pp. 978-981 ◽  
Author(s):  
Wayne S. Gardner ◽  
Thomas F. Nalepa ◽  
Michael A. Quigley ◽  
John M. Malczyk

Phosphate release rates by Stylodrilus heringianus, tubificids, and Chironomus spp. were quantified in laboratory experiments by incubating the animals in wet sand under two temperature regimes (5 and 20 °C) and under two nutritional states (full and empty guts). Inorganic phosphorus release rates (± SE) for animals incubated 24 h ranged from 0.12 ± 0.02 (n = 5) nmol phosphorus (P)∙(mg ash-free dry weight)−1∙h−1 for S. heringianus beginning with cleared guts at 5 °C to 0.81 ± 0.09 (n = 5) nmol P∙(mg ash-free dry weight)−1∙h−1 for chironomids beginning with full guts at 20 °C. Calculations based on total invertebrate bio-mass and mean basal release rate suggest that benthic invertebrate excretion could account for most P released from aerobic Lake Michigan sediments.Key words: phosphorus, benthic invertebrates, macroinvertebrates, excretion, nutrients, sediments, nutrient release


2008 ◽  
Vol 27 (1) ◽  
pp. 52-57 ◽  
Author(s):  
Amanda T. Rugenski ◽  
Amy M. Marcarelli ◽  
Heather A. Bechtold ◽  
Richard S. Inouye

2016 ◽  
Vol 99 (2) ◽  
pp. 353-359 ◽  
Author(s):  
Nancy Thiex

Abstract A previously validated method for the determination of nitrogen release patterns of slow- and controlled-release fertilizers (SRFs and CRFs, respectively) was submitted to the Expert Review Panel (ERP) for Fertilizers for consideration of First Action Official MethodSM status. The ERP evaluated the single-laboratory validation results and recommended the method for First Action Official Method status and provided recommendations for achieving Final Action. The 180 day soil incubation-column leaching technique was demonstrated to be a robust and reliable method for characterizing N release patterns from SRFs and CRFs. The method was reproducible, and the results were only slightly affected by variations in environmental factors such as microbial activity, soil moisture, temperature, and texture. The release of P and K were also studied, but at fewer replications than for N. Optimization experiments on the accelerated 74 h extraction method indicated that temperature was the only factor found to substantially influence nutrient-release rates from the materials studied, and an optimized extraction profile was established as follows: 2 h at 25°C, 2 h at 50°C, 20 h at 55°C, and 50 h at 60°C.


2016 ◽  
Vol 46 (6) ◽  
pp. 970-975 ◽  
Author(s):  
Natanael Santiago Pereira ◽  
Ismail Soares ◽  
Fábio Rodrigues de Miranda

ABSTRACT: The use of leguminous green manure can be an alternative for the region agricultural systems due to its ability to incorporate significant amounts of nutrients into the soil through decomposition and nutrient release from biomass. This study aimed to evaluate the decomposition rates and nutrient release of six leguminous green manure species ( Crotalaria juncea , Canavalia ensiformes , Cajanus cajan , Crotalaria spectabilis , Dolichos lablab and Mucuna deeringiana ) in an area of the Jaguaribe-Apodi agricultural region, Brazil. Experiment was carried out under field conditions in a randomized block design with five replications. Decomposition and nutrient release from leguminous biomass were monitored by sampling at 30, 60, 90, 120, 150 and 180 days after installing litter bags. In general, Crotalaria spectabilis and Canavalia ensiformes showed higher decomposition and nutrient release rates and they are the most promising for the region in the conditions of this study. However, for greater persistence of residues in the soil, Crotalaria juncea is more recommended.


2021 ◽  
Vol 13 (14) ◽  
pp. 7609
Author(s):  
Ling Sun ◽  
Zhixu Sun ◽  
Juan Hu ◽  
Opoku-Kwanowaa Yaa ◽  
Jinggui Wu

Straw and animal manure are major organic waste materials from agricultural ecosystems. Different kinds of animal manure combined with straw (AM-S) may have varying effects on the decomposition, nutrient release, and structural changes of maize straw. Using the Humic Cambisols soil as the experimental area, the straw decomposition characteristics under the co-application of animal manure were studied following the nylon net bag landfill method. The experiment involved four treatments: maize straw only (S), maize straw plus ox manure (SO), maize straw plus chicken manure (SC), and maize straw plus pig manure (SP). The treatments with AM-S accelerated the decomposition of straw and increased the release rate of nutrients and organic components (cellulose, hemicellulose, and lignin). During the 240 days of the study, straw decomposition showed a trend of increasing rapidly in the first stages and then increasing slowly in the latter stages in all the treatments. At 240 d, the straw decomposition rates and carbon release rates of the AM-S treatments were 65.25–71.87% and 64.04–69.35%, respectively. At the end of the experiment, the order for the final release rates of nitrogen (N), phosphorus (P), and potassium (K) was K (93.25–96.56%) > P (42.25–55.08%) > N (40.01–52.23%). Moreover, scanning electron microscopy showed that SP treatment had the highest degree of structural changes of the maize straw compared with the other treatments. The purpose of this study was to screen the effective animal manure that can promote straw decomposition and provide a reference for the rational use of straw and animal manure management. In conclusion, the study suggested that the co-application of animal manure and straw should be adopted in agricultural systems, especially SP treatment, as it was more conducive to promoting the decomposition of maize straw and the release of nutrients.


FLORESTA ◽  
2020 ◽  
Vol 50 (3) ◽  
pp. 1449
Author(s):  
Fabiana Rodrigues Baldez ◽  
Marcos Gervasio Pereira ◽  
Tatiana Saldanha ◽  
Wilbert Valkinir Cabreira ◽  
Cristiane Figueira Da Silva ◽  
...  

This study analyzes microbiota population dynamics as a function of nutrient release rate during litter decomposition. For that, we observed two tree species native to the Atlantic Forest: brazilwood (Paubrasilia echinata) and inga (Inga laurina). To assess nitrogen (N), phosphorus (P), and potassium (K) release rates from the litter, we performed six collections over 365 days. In these collections, we placed polyvinyl bags called ‘litter bags’ below the treetops of the chosen species to collect dry leaves. To identify the groups of litter microorganisms (fungi, bacteria, and actinomycetes), we used the plate culture method to count the number of colony-forming units (CFU), and the fatty acid profile method, through biomarkers, associating nutrient release rate and abiotic factors (temperature and rainfall). Nutrient release rate correlates with litter decomposition at 140 days, and most microorganisms correlate with litter decomposition at 30 days. Nitrogen and phosphorus release rates correlate with rainfall. Fungi correlate with P release rate in inga litter decomposition. The bacteria biomarker 17:1 was the only one that correlated with N and P release rates. In conclusion, rainfall affects nutrient solubilization in the studied species, and microbiota differs between the species. When comparing the two methods to identify these microorganisms, information from one method complements information from the other, since both provide different but interdependent data.


Sign in / Sign up

Export Citation Format

Share Document