scholarly journals Agronomic and Quality Evaluation of Common Wheat Near-Isogenic Lines Carrying the Leaf Rust Resistance Gene Lr47

Crop Science ◽  
2008 ◽  
Vol 48 (4) ◽  
pp. 1441-1451 ◽  
Author(s):  
Juan Carlos Brevis ◽  
Oswaldo Chicaiza ◽  
Imtiaz A. Khan ◽  
Lee Jackson ◽  
Craig F. Morris ◽  
...  
Plant Disease ◽  
2008 ◽  
Vol 92 (3) ◽  
pp. 469-473 ◽  
Author(s):  
S. A. Herrera-Foessel ◽  
R. P. Singh ◽  
J. Huerta-Espino ◽  
H. M. William ◽  
V. Garcia ◽  
...  

Leaf rust, caused by Puccinia triticina, is an important disease of durum wheat (Triticum turgidum subsp. durum) and only a few designated resistance genes are known to occur in this crop. A dominant leaf rust resistance gene in the Chilean durum cv. Llareta INIA was mapped to chromosome arm 7BL through bulked segregant analysis using the amplified fragment length polymorphism (AFLP) technique, and by mapping three polymorphic markers in the common wheat (T. aestivum) International Triticeae Mapping Initiative population. Several simple sequence repeat (SSR) markers, including Xgwm344-7B and Xgwm146-7B, were associated with the leaf rust resistance gene. Resistance response and chromosomal position indicated that this gene is likely to be Lr14a. The SSR markers Xgwm344-7B and Xgwm146-7B and one AFLP marker also differentiated common wheat cv. Thatcher from the near-isogenic line with Lr14a, as well as durum ‘Altar C84’ from durum wheat with Lr14a. This is the first report of the presence of Lr14a in durum wheat, although the gene originally was transferred from emmer wheat ‘Yaroslav’ to common wheat. Lr14a is also present in CIMMYT-derived durum ‘Somateria’ and effective against Mexican and other P. triticina races of durum origin. Lr14a should be deployed in combination with other effective leaf rust resistance genes to prolong its effectiveness in durum wheat.


Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1650-1654 ◽  
Author(s):  
S. A. Herrera-Foessel ◽  
R. P. Singh ◽  
J. Huerta-Espino ◽  
H. M. William ◽  
A. Djurle ◽  
...  

Leaf rust, caused by Puccinia triticina, is an important disease of durum wheat (Triticum turgidum subsp. durum) worldwide, and the most effective way to control it is through the use of resistant cultivars. A partially dominant leaf rust resistance gene present in the International Maize and Wheat Improvement Center-derived Chilean cv. Guayacan INIA and its sister line Guayacan 2 was mapped to chromosome arm 6BS by identifying linked amplified fragment length polymorphisms (AFLPs) and mapping two of the molecular markers in common wheat (T. aestivum) linkage maps of the International Triticeae Mapping Initiative and Oligoculm × Fukuho-komugi populations. Comparison of infection type responses of the two resistant durums with common wheat testers carrying the previously mapped resistance genes Lr36 and Lr53 on 6BS, and their chromosomal positions, indicated that the resistance gene in durum wheat Guayacan INIA is a new leaf rust resistance gene, which was designated as Lr61. Gene Lr61 is effective against the P. triticina race BBG/BN predominant in northwestern Mexico and other races infecting durum wheat in various countries.


2018 ◽  
Vol 54 (8) ◽  
pp. 989-993
Author(s):  
I. G. Adonina ◽  
E. Yu. Bukatich ◽  
V. V. Piskarev ◽  
V. A. Tyunin ◽  
E. R. Shreyder ◽  
...  

Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 655-664 ◽  
Author(s):  
Li Huang ◽  
Steven A Brooks ◽  
Wanlong Li ◽  
John P Fellers ◽  
Harold N Trick ◽  
...  

Abstract We report the map-based cloning of the leaf rust resistance gene Lr21, previously mapped to a generich region at the distal end of chromosome arm 1DS of bread wheat (Triticum aestivum L.). Molecular cloning of Lr21 was facilitated by diploid/polyploid shuttle mapping strategy. Cloning of Lr21 was confirmed by genetic transformation and by a stably inherited resistance phenotype in transgenic plants. Lr21 spans 4318 bp and encodes a 1080-amino-acid protein containing a conserved nucleotide-binding site (NBS) domain, 13 imperfect leucine-rich repeats (LRRs), and a unique 151-amino-acid sequence missing from known NBS-LRR proteins at the N terminus. Fine-structure genetic analysis at the Lr21 locus detected a noncrossover (recombination without exchange of flanking markers) within a 1415-bp region resulting from either a gene conversion tract of at least 191 bp or a double crossover. The successful map-based cloning approach as demonstrated here now opens the door for cloning of many crop-specific agronomic traits located in the gene-rich regions of bread wheat.


Sign in / Sign up

Export Citation Format

Share Document