Trace Metal Chemistry in Arid-Zone Field Soils Amended with Sewage Sludge: III. Effect of Time on the Extraction of Trace Metals

1983 ◽  
Vol 47 (5) ◽  
pp. 898-902 ◽  
Author(s):  
Garrison Sposito ◽  
C. S. LeVesque ◽  
Joseph P. LeClaire ◽  
A. C. Chang
2002 ◽  
Vol 82 (3) ◽  
pp. 323-333 ◽  
Author(s):  
M B McBride ◽  
L J Evans

The long-term potential for sewage sludge amendments to alter forage trace metal concentrations was determined on bromegrass, which received no sludge application for 20 yr following annual application during 1973-1980 on a no-till randomized-plot experimental site. In addition, soils were analyzed for trace metals, both total and extractable (using hot 0.01 M CaCl2), by axial-view inductively coupled plasma spectrometry. For Cu, Ni, Zn and Cd, extractability from the soil (by CaCl2) as well as plant tissue concentrations were relatively low considering the high loadings of these particular metals, a fact attributable to the near-neutral pH and high organic matter content of these calcareous soils. However, total and extractable soil Mo remained elevated in the sewage-sludge-amended plots above the levels measured in the fertilized control plots some 20 yr after the last sewage sludge application. Mo bioaccumulated in the bromegrass more than the other trace metals investigated at this site. The Cu:Mo ratio in the forage, a measure of potential to induce Cu deficiency in grazing ruminants, was substantially depressed by most of the sewage sludge treatments. Comparison of the 2000 and 1980 bromegrass analyses suggests an increase in the long-term plant availability of Mo in soils amended with high-Fe and high-Al sludges. Conversely, there was a long-term decrease in Mo availability on the high-Ca sludge treatment, consistent with evidence that much of the Mo has been lost from the topsoil since sludge application. For Cu, Ni and Zn, plant availability appears to have decreased between 1980 and 2000, attributable in part to a calculated loss of substantial fractions of these metals from the topsoil. Bromegrass concentrations of Cu, Ni, Zn, Cd and Mo were strongly correlated to CaCl2-extractable and total metals in the soils, indicating the utility of 0.01 M CaCl2 in predicting plant availability. The chemical differences in the three sludge types applied at the site (high-Ca, high-Al, high-Fe) had little long-term impact on the extractability and phytoavailability of most trace metals remaining in the topsoil. Key words: Biosolids, molybdenum, copper, forage, cadmium, heavy metals


Author(s):  
W. Halcrow ◽  
D. W. Mackay ◽  
I. Thornton

SummaryTrace metals have been determined in the sediments, waters and fauna of a sewagesludge disposal area in the Firth of Clyde. Enhanced values of organic carbon and several metals were found in the sediments of the immediate deposit area. The results are discussed in relation to local background variations and compared with data from the Solway Firth. Trace-metal concentrations in the waters of the deposit area were higher than those from further off shore in the Clyde.Epifaunal species showed rather erratic variation in trace metal content, unrelated to total or readily extractable trace metals in the underlying sediment. The tracemetal content of demersal fish species was not significantly different from figures reported for elsewhere in the United Kingdom.The distributions of some in-faunal and epifaunal species in the area are described.It is concluded that the effects of sewage sludge disposal in this area are local, gross changes being limited to an area of about 20 km2 of sea-bed. However, little is known of the overall effects of toxic wastes particularly at threshold levels, and further monitoring is required.


2009 ◽  
Vol 66 (3) ◽  
pp. 368-376 ◽  
Author(s):  
Marcelo Valadares Galdos ◽  
Isabella Clerici De Maria ◽  
Otávio Antonio de Camargo ◽  
Sonia Carmela Falci Dechen

The use of sewage sludge in agricultural soils as a macro and micronutrient source and as a soil conditioner has been one of the alternatives for its disposal. However, sewage sludge contains trace metals, which are potential sources of pollution. The goal of this study was to evaluate the effect of sewage sludge application on surface water contamination through runoff when it was applied in a soil cultivated with corn. The effect of sludge application on the concentration and load of copper, nickel and zinc and the volume of runoff water and sediment were evaluated. The experiment was set up in plots used to study erosion losses in Campinas, Sao Paulo State, Brazil. The soil is a clayey Rhodic Hapludox. Three treatments were studied: no sewage sludge, sewage sludge to supply the N required by the crop and twice that amount, with four replications. The water and sediment lost by runoff were measured after each rainfall, and sampled for chemical analysis. The volumes of water and sediment lost by runoff decreased after sewage sludge application. The waste application increased trace metal concentration in the runoff water and sediment, especially zinc, which was present in high concentration in the sewage sludge used. Nevertheless, the load of trace metals transported from the plot was mostly dependent on the total runoff volume. Most of the Cu, Zn and Ni losses were via sediment, and occurred in a few highly erosive rainfall events in the period studied.


2021 ◽  
Author(s):  
Ehab A. Ibrahim ◽  
El-Metwally M. Selim

Abstract The accumulation of trace metals in vegetable field soils is of expanding worry because of the potential health hazards and its detrimental effects on soil ecosystems. To investigate the state of trace metal pollution in vegetable field soils, 60 surface soil samples were collected from vegetable fields across the Eastern Nile Delta region, Egypt. The results explained that the concentrations of Cu, Mn and Ni were lesser than their corresponding background values, while the concentrations of Cd, Co, Pb and Zn were exceed their background values. The pollution indices showed that the study soil experienced low to moderate contamination, and the Cd and Cr contamination was serious. The hazard index values of nine trace metals signified that there no adverse non-carcinogenic risk for adults and children. The carcinogenic risk of Cd, Co, Ni and Pb for both age groups was within the acceptable limits, while Cr had critical carcinogenic hazard to children. Overall, the quality of studied soils is relative safety, although some samples impose serious pollution problems by Cd and Cr. Thus, properly monitor trace metals and soil management action should be applied to reduce further soil pollution in vegetable fields in the Eastern Nile Delta.


Ekologija ◽  
2009 ◽  
Vol 55 (2) ◽  
pp. 142-152 ◽  
Author(s):  
Irena Eitminavičiūtė ◽  
Audronė Matusevičiūtė ◽  
Valerijus Gasiūnas ◽  
Milda Radžiūtė ◽  
Neda Grendienė

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Roxana T. Shafiee ◽  
Poppy J. Diver ◽  
Joseph T. Snow ◽  
Qiong Zhang ◽  
Rosalind E. M. Rickaby

AbstractAmmonia oxidation by archaea and bacteria (AOA and AOB), is the first step of nitrification in the oceans. As AOA have an ammonium affinity 200-fold higher than AOB isolates, the chemical niche allowing AOB to persist in the oligotrophic ocean remains unclear. Here we show that marine isolates, Nitrosopumilus maritimus strain SCM1 (AOA) and Nitrosococcus oceani strain C-107 (AOB) have contrasting physiologies in response to the trace metals iron (Fe) and copper (Cu), holding potential implications for their niche separation in the oceans. A greater affinity for unchelated Fe may allow AOB to inhabit shallower, euphotic waters where ammonium supply is high, but competition for Fe is rife. In contrast to AOB, AOA isolates have a greater affinity and toxicity threshold for unchelated Cu providing additional explanation to the greater success of AOA in the marine environment where Cu availability can be highly variable. Using comparative genomics, we predict that the proteomic and metal transport basis giving rise to contrasting physiologies in isolates is widespread across phylogenetically diverse marine AOA and AOB that are not yet available in pure culture. Our results develop the testable hypothesis that ammonia oxidation may be limited by Cu in large tracts of the open ocean and suggest a relatively earlier emergence of AOB than AOA when considered in the context of evolving trace metal availabilities over geologic time.


1991 ◽  
Vol 18 (6) ◽  
pp. 893-903 ◽  
Author(s):  
Inderjit Singh ◽  
Donald S. Mavinic

Samples were taken from 72 high-rise apartment suites (6 suites in 12 individual high-rise towers) and 60 single-family houses located within the Greater Vancouver Regional District. The influence of the following factors on trace metal concentrations in 1-L first-flush drinking water samples and “running” hot water samples was investigated: building height, location, plumbing age, type of plumbing, and type of building. Results of this survey show that with the exception of building height, all factors had a correlation with one or more of the trace metals investigated. The trace metals examined were lead, copper, iron, and zinc. Lead was influenced primarily by building type, copper by plumbing age and type of plumbing, and iron by location. Elevated lead levels were associated with high-rise samples. New copper plumbing systems resulted in high copper levels. Highest iron levels in the drinking water were measured in the East Vancouver location. Zinc did not show a distinct correlation with any of the factors investigated. Brass faucets were the primary source of zinc in tap water. They also contributed substantially to the lead detected in the 1-L first-flush sample. Metal concentrations measured in the high-rise and house samples were compared with the U.S. Environmental Protection Agency's (USEPA) maximum contaminant levels (MCLs) and the proposed “no-action” level for lead. In high-rise samples, the 0.01 mg/L “no-action” level proposed for lead was exceeded in 43% of the samples, and 62% of the samples exceeded the current 1.0 mg/L MCL standard for copper. In single-family house samples, these values were 47% and 73%, respectively. The average lead concentrations were 0.020 mg/L for all high-rise samples and 0.013 mg/L for house samples. Regulatory levels stated above would still be exceeded in 6% of the cases for lead and 9% of the cases for copper, even after prolonged flushing of the tap in a high-rise building. In all cases associated with single-family houses, flushing the cold water tap for 5 minutes was successful in achieving compliance levels. Key words: aggressive water, compliance, corrosive, drinking water, first-flush, GVRD, high-rise, single-family house, trace metals, USEPA.


Sign in / Sign up

Export Citation Format

Share Document