Kinetics of Soil Chemical Reactions: Relationships between Empirical Equations and Diffusion Models

1991 ◽  
Vol 55 (5) ◽  
pp. 1307-1312 ◽  
Author(s):  
Chaim Aharoni ◽  
Donald L. Sparks ◽  
Sarah Levinson ◽  
Israela Ravina
2009 ◽  
Vol 80 (1) ◽  
Author(s):  
Alexei D. Kiselev ◽  
Vladimir G. Chigrinov ◽  
Hoi-Sing Kwok

1986 ◽  
Vol 51 (3) ◽  
pp. 636-642
Author(s):  
Michal Németh ◽  
Ján Mocák

A highly efficient coulometric cell was designed and constructed, ensuring a constant potential over the whole surface of the working electrode and suitable for very rapid electrolysis. It consists of concentric cylindrical Teflon parts; also the working and auxiliary electrodes are cylindrical and concentric. Electrolysis can be carried out under anaerobic conditions. Functioning of the cell was tested on the oxidation of hexacyanoferrate(II) and chlorpromazine and reduction of hexacyanoferrate(III). The new cell is suitable for routine quantitative analyses and in studying the mechanism and kinetics of moderately rapid chemical reactions.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Klaiani B. Fontana ◽  
Giane Gonçalves Lenzi ◽  
Erica R. L. R. Watanabe ◽  
Ervin Kaminski Lenzi ◽  
Juliana A. M. T. Pietrobelli ◽  
...  

The removal of Pb(II) from water by biosorption processes onto malt bagasse was investigated and the kinetic and thermodynamic parameters were obtained; additionally a diffusion modeling was proposed. The characterization of malt bagasse was performed by FTIR and SEM/EDS. The experiments were conducted in batch system and an experimental design based response surface methodology was applied for agitation speed and pH optimization. The kinetics of biosorption followed pseudo-second-order model and the temperature of the process affected the biosorption capacity. Isotherm models of Langmuir, Freundlich, and Elovich were applied and the Langmuir model showed better fit and the estimated biosorption capacity was 29.1 mg g−1. The negative values obtained for ΔG° and positive values of ΔH° confirm, respectively, the spontaneous and endothermic nature of the process. The diffusion modeling was performed based on experiments in the absence of agitation to investigate the influence of the biosorbent on the sorption process of Pb(II) ions.


2021 ◽  
Vol 29 ◽  
pp. 95-115
Author(s):  
Rafal Kozubski ◽  
Graeme E. Murch ◽  
Irina V. Belova

We review the results of our Monte Carlo simulation studies carried out within the past two decades in the area of atomic-migration-controlled phenomena in intermetallic compounds. The review aims at showing the high potential of Monte Carlo methods in modelling both the equilibrium states of the systems and the kinetics of the running processes. We focus on three particular problems: (i) the atomistic origin of the complexity of the ‘order-order’ relaxations in γ’-Ni3Al; (ii) surface-induced ordering phenomena in γ-FePt and (iii) ‘order—order’ kinetics and self-diffusion in the ‘triple-defect’ β-NiAl. The latter investigation demonstrated how diverse Monte Carlo techniques may be used to model the phenomena where equilibrium thermodynamics interplays and competes with kinetic effects.


1985 ◽  
Vol 248 (2) ◽  
pp. R147-R156 ◽  
Author(s):  
D. G. Covell ◽  
P. K. Narang ◽  
D. G. Poplack

The antipurine 6-mercaptopurine (6-MP) is effective in the induction and maintenance of remission in patients with acute lymphocytic leukemia. This report presents a compartmental model that describes the kinetics of 6-MP in the plasma and cerebrospinal fluid (CSF) of the monkey. Analysis is based on simultaneously measured plasma and CSF 6-MP concentrations after intravenous and intraventricular bolus administration. Results indicate that 6-MP administered intraventricularly remains largely in the CSF. Disappearance of 6-MP from CSF is principally due to convective losses at a rate equivalent to CSF turnover. Diffusion of 6-MP across the ependymal surface accounts for only 7% of the 6-MP appearing in the plasma. Conversely the dominant route for entry of 6-MP into the CSF from the plasma is entrainment in choroidally formed CSF. Only 12% of 6-MP in the CSF after intravenous administration can be accounted for by permeation of cerebral capillaries and diffusion through brain parenchyma and across the ependymal surface into CSF. These results indicate that the choroid plexus is not a significant barrier for the transfer of molecules like 6-MP from plasma to CSF.


Sign in / Sign up

Export Citation Format

Share Document