Kinetics of Adhesion Interaction of Polyolefins with Metals under Conditions of Contact Thermooxidation. II. Dissolution and Diffusion of Iron Compounds into the Bulk of Polymer

1997 ◽  
Vol 61 (1-4) ◽  
pp. 175-194 ◽  
Author(s):  
M. Kalnins ◽  
J. Malers
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Klaiani B. Fontana ◽  
Giane Gonçalves Lenzi ◽  
Erica R. L. R. Watanabe ◽  
Ervin Kaminski Lenzi ◽  
Juliana A. M. T. Pietrobelli ◽  
...  

The removal of Pb(II) from water by biosorption processes onto malt bagasse was investigated and the kinetic and thermodynamic parameters were obtained; additionally a diffusion modeling was proposed. The characterization of malt bagasse was performed by FTIR and SEM/EDS. The experiments were conducted in batch system and an experimental design based response surface methodology was applied for agitation speed and pH optimization. The kinetics of biosorption followed pseudo-second-order model and the temperature of the process affected the biosorption capacity. Isotherm models of Langmuir, Freundlich, and Elovich were applied and the Langmuir model showed better fit and the estimated biosorption capacity was 29.1 mg g−1. The negative values obtained for ΔG° and positive values of ΔH° confirm, respectively, the spontaneous and endothermic nature of the process. The diffusion modeling was performed based on experiments in the absence of agitation to investigate the influence of the biosorbent on the sorption process of Pb(II) ions.


2021 ◽  
Vol 29 ◽  
pp. 95-115
Author(s):  
Rafal Kozubski ◽  
Graeme E. Murch ◽  
Irina V. Belova

We review the results of our Monte Carlo simulation studies carried out within the past two decades in the area of atomic-migration-controlled phenomena in intermetallic compounds. The review aims at showing the high potential of Monte Carlo methods in modelling both the equilibrium states of the systems and the kinetics of the running processes. We focus on three particular problems: (i) the atomistic origin of the complexity of the ‘order-order’ relaxations in γ’-Ni3Al; (ii) surface-induced ordering phenomena in γ-FePt and (iii) ‘order—order’ kinetics and self-diffusion in the ‘triple-defect’ β-NiAl. The latter investigation demonstrated how diverse Monte Carlo techniques may be used to model the phenomena where equilibrium thermodynamics interplays and competes with kinetic effects.


1985 ◽  
Vol 248 (2) ◽  
pp. R147-R156 ◽  
Author(s):  
D. G. Covell ◽  
P. K. Narang ◽  
D. G. Poplack

The antipurine 6-mercaptopurine (6-MP) is effective in the induction and maintenance of remission in patients with acute lymphocytic leukemia. This report presents a compartmental model that describes the kinetics of 6-MP in the plasma and cerebrospinal fluid (CSF) of the monkey. Analysis is based on simultaneously measured plasma and CSF 6-MP concentrations after intravenous and intraventricular bolus administration. Results indicate that 6-MP administered intraventricularly remains largely in the CSF. Disappearance of 6-MP from CSF is principally due to convective losses at a rate equivalent to CSF turnover. Diffusion of 6-MP across the ependymal surface accounts for only 7% of the 6-MP appearing in the plasma. Conversely the dominant route for entry of 6-MP into the CSF from the plasma is entrainment in choroidally formed CSF. Only 12% of 6-MP in the CSF after intravenous administration can be accounted for by permeation of cerebral capillaries and diffusion through brain parenchyma and across the ependymal surface into CSF. These results indicate that the choroid plexus is not a significant barrier for the transfer of molecules like 6-MP from plasma to CSF.


1997 ◽  
Vol 481 ◽  
Author(s):  
E. Pineda ◽  
T. Pradell ◽  
D. Crespo ◽  
N. Clavaguera ◽  
J. ZHU ◽  
...  

ABSTRACTThe microstructure developed in primary crystallizations is studied under realistic conditions. The primary crystallization of an amorphous alloy is modeled by considering the thermodynamics of a metastable phase transition and the kinetics of nucleation and crystal growth under isothermal annealing. A realistic growth rate, including an interface controlled growth at the beginning of the growth of each single grain and diffusion controlled growth process with soft impingement afterwards is considered. The reduction in the nucleation rate due to the compositional change in the remaining amorphous matrix is also taken into account. The microstructures developed during the transformation are obtained by using the Populational KJMA method, from the above thermodynamic and kinetic factors. Experimental data of transformed fraction, grain density, average grain size, grain size distribution and other related parameters obtained from annealed metallic glasses are modeled.


1979 ◽  
Vol 32 (12) ◽  
pp. 2597 ◽  
Author(s):  
AO Filmer ◽  
AJ Parker ◽  
BW Clare ◽  
LGB Wadley

The kinetics of oxidation with oxygen of chalcocite, Cu2S, to CuS in buffered aqueous ammonia at pH 10.5 at 30� can be modeled approximately by a shrinking core of Cu2S within a thickening shell of CuxS (x ≥ 1). The Cu2S core offers partial cathodic protection to the CuxS and diffusion of Cu+ through CuxS controls the rate of reaction. The kinetics of oxidation of covellite, CuS, to Cu2+, sulfur and sulfate ions in the same solvent can be modeled by a shrinking core of CuS surrounded by a shrinking sphere of CuyS (y < 1) which is much less effectively protected cathodically by the CuS core. Oxidation of CuS is subject to mixed chemical and diffusion control. Rates of oxidation of NiS and of CuS, in the presence and absence of tetrachloroethene and ammonium sulfate, show that, whether sulfur is a major oxidation product or not, the presence of sulfur has very little, if any, influence on the rate or mechanism of oxidation. This is contrary to current ideas on metal sulfide oxidation.


Nanoscale ◽  
2018 ◽  
Vol 10 (26) ◽  
pp. 12612-12624 ◽  
Author(s):  
Dipak Dutta ◽  
Andita Nataria Fitri Ganda ◽  
Jui-Kung Chih ◽  
Cheng-Chun Huang ◽  
Chung-Jen Tseng ◽  
...  

The interfacial chemistry and diffusion kinetics of a polymer–graphene nanocomposite anticorrosion coating were studied to minimize galvanic corrosion facilitated by the formation of an interconnected graphene percolation network.


1990 ◽  
Vol 68 (1) ◽  
pp. 76-83 ◽  
Author(s):  
G. G. Berdine ◽  
D. Dale ◽  
J. E. Johnson ◽  
J. L. Lehr

Subpleural concentrations of He and SF6 were measured during multiple-breath washouts from isolated dog lungs. Tidal volume, inspiratory flow, and frequency were in the normal range of canine ventilation. For each gas, there was a local minimum in concentration during inspiration (Cinsp) and a local maximum in concentration during exhalation (Cexp). SF6 exhibited a deeper inspiratory trough than He for each breath of every washout. For large tidal volumes (10-20 ml/kg), Cexp approximated a single exponential decay and He was cleared more rapidly than SF6. For small tidal volumes (2.5 ml/kg), Cexp was multiexponential and SF6 was cleared more rapidly than He. Cinsp/Cexp (a measure of the depth of the inspiratory trough) and the kinetics of Cexp decay were determined for washouts using a tidal volume of 10 and 20 ml/kg and different inspiratory flows. Under all conditions, an increase of inspiratory flow resulted in a deeper inspiratory trough for both He and SF6. For washouts using 10 ml/kg and 60 breaths/min, an increase of inspiratory flow increased the clearance of both gases. In washouts using lower ventilatory frequencies, gas clearance was independent of inspiratory flow. These findings are contrary to predictions of contemporary models of convection and diffusion in the lung. This study suggests that convective axial mixing and radial diffusion in the airways are important determinants of pulmonary gas transport.


1992 ◽  
Vol 114 (23) ◽  
pp. 9011-9017 ◽  
Author(s):  
Teddy G. Traylor ◽  
Douglas Magde ◽  
Jikun Luo ◽  
Kevin N. Walda ◽  
Debkumar Bandyopadhyay ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document