scholarly journals Effect of lactic acid bacteria inoculants, formic acid, potassium sorbate and sodium benzoate on fermentation quality and aerobic stability of wilted grass silage

2008 ◽  
Vol 15 (3) ◽  
pp. 185 ◽  
Author(s):  
E. SAARISALO ◽  
T. JALAVA ◽  
E. SKYTTÄ

The efficiency of a novel strain of lactic acid bacteria inoculant (Lactobacillus plantarum VTT E-78076, E76) on the fermentation quality of wilted silage was studied. Furthermore, the possibility to improve aerobic stability of silages by combining an inoculant and chemical preservatives was investigated. Two experiments were conducted with wilted timothy-meadow fescue herbage (dry matter 429 and 344 g kg-1) using six treatments. In experiment I, E76 (106 cfu g-1 fresh matter (FM)) was applied alone and in combination with sodium benzoate (0.3 g kg-1 grass FM) or low rate of formic acid (0.4 l t-1 FM). In experiment II, E76 and a commercial inoculant were applied alone and in combination with sodium benzoate. Untreated silage and formic acid (4 l t-1 FM) treated silage served as negative and positive controls in both experiments. The effect of sodium benzoate and potassium sorbate in experiment I, on aerobic stability was tested by treating silages prior to aerobic stability measurements. The novel lactic acid bacteria inoculant was equally effective in improving fermentation quality as the commercial inoculant. However, the aerobic stability of both inoculated silages was poorer than that of formic acid treated or the untreated one in one of the experiments. The results suggested that antimicrobial properties of E76 were not effective enough to improve aerobic instability. One option to overcome this problem is to use chemical additives in combination with the inoculants.;

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1432
Author(s):  
Horst Auerbach ◽  
Peter Theobald

Whole-crop rye harvested before maturity represents a valuable forage for silage production. Due to the scarcity of data on fermentation characteristics and aerobic stability (ASTA) and the lack of information on mycotoxin formation during aeration of early-cut rye (ECR) silage after silo opening, we evaluated the effects of different additive types and compositions. Wilted forage was treated with various biological and chemical additives, ensiled in 1.5-L glass jars and stored for 64 days. Fermentation pattern, yeast and mould counts and ASTA were determined at silo opening. In total 34 mycotoxins were analysed in wilted forage and in silage before and after 240 h of air exposure. Chemical additives caused the lowest dry matter (DM) losses during fermentation accompanied with the lowest ethanol production and the highest water-soluble carbohydrate concentration. Aerobic deterioration, which started within two days after silo opening in silage left untreated and inoculated with homofermentative lactic acid bacteria, was prevented by the combined use of hetero- and homofermentative lactic acid bacteria and the chemical additive containing sodium nitrite, hexamethylene tetramine and potassium sorbate. Moreover, these two additives largely restricted the formation of the mycotoxin roquefortine C to < 0.05 mg kg−1 DM after aeration, whereas untreated silage contained 85.2 mg kg−1 DM.


2020 ◽  
Vol 19 (1) ◽  
pp. 744-752
Author(s):  
Xuxiong Tao ◽  
Sifan Chen ◽  
Jie Zhao ◽  
Siran Wang ◽  
Zhihao Dong ◽  
...  

2011 ◽  
Vol 347-353 ◽  
pp. 189-192
Author(s):  
Hui Li Wang ◽  
Qi Zhong Sun ◽  
Fu Yu Yang ◽  
Chun Cheng Xu

This experiment was conducted to evaluate the effect of ensiling on fermentation quality and aerobic stability of a total mixed ration (TMR) containing wet brewers’ grains and corn straw. During the ensiling period, pH fell dramatically from 6.00 to 3.92 at the initial 3 days, then it maintained relatively stable. Lactic acid concentration firstly increased rapidly then it became slowly to reach 3.21% at day 28 post-ensiling. No propionic acid or butyric acid was observed throughout the ensiling. When exposed to air, the temperature of TMR increased quickly to reach a maximum of about 45°C at the 6-day, then it tended to decline until day 9. Later, it had another relative low peak at the 10-day, then it dropped slowly to be equal to air temperature. For TMR silage, no heat production or mold were detected in the entire period. In addition, during the days of exposure, the pH for TMR varied from 6.0-8.7, while TMR silages had no significant differences (3.86 to 3.87). The number of lactic acid bacteria (LAB) for the TMR decreased from the initial 3.2×103cfu g-1to below detectable levels and yeast counts increased by 1000 times. However, the TMR silage had no significant change in LAB and yeast counts. These results indicated that the TMR silage showed great quality and aerobic stability. Overall, fermentation plays an important part in helping total mixed ration silage forming a good aerobic stability.


2021 ◽  
Vol 9 (1) ◽  
pp. 52-59
Author(s):  
Xuxiong Tao ◽  
Chongwen Ji ◽  
Sifan Chen ◽  
Jie Zhao ◽  
Siran Wang ◽  
...  

This study was conducted to investigate the effects of adding citric acid residue (CAR) with or without lactic acid bacteria (LAB) to Napier grass (Cenchrus purpureus; syn. Pennisetum purpureum) cv. Sumu No. 2 at ensiling on the fermentation quality and aerobic stability of the resulting silage. Treatments included: Control (Napier grass forage without additives); and Napier grass inoculated with lactic acid bacteria (Lactobacillus plantarum and L. buchneri) at 1 × 106 cfu/gfresh weight (FW) forage (LAB) or 36 g citric acid residue/kg FW forage (CAR) or a mixture of CAR and LAB (CL). Forty-five days after ensiling the silages were tested for chemical and microbial composition and an aerobic stability test was conducted. The addition of CAR with or without LAB increased the DM and lactic acid concentrations in silage and decreased pH plus acetic acid, ammonia nitrogen (NH3-N), neutral detergent fiber and cellulose concentrations relative to Control. The pH in LAB silage was lower than in Control, while lactic acid concentration was higher. During the first 2 days of aerobic exposure, all additives increased the water-soluble carbohydrate (WSC) and lactic acid concentrations and decreased pH plus NH3-N and acetic acid concentrations. Moreover, CL silages had the highest WSC and the lowest NH3-N and acetic acid concentrations during aerobic exposure. However, all additives failed to improve the aerobic stability of the silage. While CAR with or without LAB inoculant improved the fermentation quality of silage made from Napier grass, more studies are warranted to identify additives which can improve aerobic stability of the silage after opening.


Author(s):  
P. O' Kiely

When grass with an adequate content of fermentable substrate and epiphytic lactic acid bacteria is ensiled properly, the fermentation which follows is normally considered satisfactory. This fermentation can be altered by various categories of additive such as acids, sugars and inoculants, each of which can influence the fermentation differently. The experiment reported compared the fermentation products, aerobic stability and animal performance for silages made using formic acid or a Lactobacillus plantarum inoculant with well preserved silage made without additive treatment.A 42 day regrowth of Lolium multiflorum (cv. Lemtal) was harvested without wilting using two precision - chop harvesters. Alternate loads of grass were ensiled with (a) no additive, (b) formic acid (850g/kg) at 3.0 1/t or (c)inoculant (Ecosyl - ICI plc) at 3 1/t (separate harvester). The inoculant was constituted immediately before use and was applied in accordance with the manufacturers instructions. Harvesting was completed and the silos sealed within 26 hours of mowing. The silos were opened after 113 days.


2006 ◽  
Vol 69 (6) ◽  
pp. 1354-1364 ◽  
Author(s):  
F. N. ARROYO LÓPEZ ◽  
M. C. DURÁN QUINTANA ◽  
A. GARRIDO FERNÁNDEZ

The effect of potassium sorbate, sodium benzoate, and ozone in combination with citric, lactic, and acetic acids on the microbial population of seasoned table olives of the olive ‘Aloreña’ cultivar was studied in both fresh (FF) and stored fruits (SF). The inactivation/growth curves were modeled and the biological parameters estimated, with yeast used as the target microorganism. Regardless of the acid added, potassium sorbate showed a general inactivation effect on yeasts in the products prepared from both FF and SF. Sodium benzoate had a rapid inactivation effect with FF, but with SF, it was effective only in the presence of acetic acid. A strain of Issatchenkia occidentalis was found that was resistant to the combination of this preservative with citric or lactic acids. In FF, ozone showed an initial marked inhibition against yeasts, but later, yeasts were again able to grow. In SF, ozone was a strong inactivating agent when it replaced any of the traditional preservatives. Lactic acid bacteria were always absent in products prepared from FF and apparently were not affected by the different preservative agents in those prepared from SF. The behavior of yeasts and lactic acid bacteria populations in commercial products were similar to those found in experimental treatments.


2019 ◽  
Vol 90 (4) ◽  
pp. 513-522 ◽  
Author(s):  
Ying‐Chao Zhang ◽  
Dong‐Xia Li ◽  
Xue‐Kai Wang ◽  
Yan‐Li Lin ◽  
Qing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document