Microbial Evolution during Storage of Seasoned Olives Prepared with Organic Acids with Potassium Sorbate, Sodium Benzoate, and Ozone Used as Preservatives

2006 ◽  
Vol 69 (6) ◽  
pp. 1354-1364 ◽  
Author(s):  
F. N. ARROYO LÓPEZ ◽  
M. C. DURÁN QUINTANA ◽  
A. GARRIDO FERNÁNDEZ

The effect of potassium sorbate, sodium benzoate, and ozone in combination with citric, lactic, and acetic acids on the microbial population of seasoned table olives of the olive ‘Aloreña’ cultivar was studied in both fresh (FF) and stored fruits (SF). The inactivation/growth curves were modeled and the biological parameters estimated, with yeast used as the target microorganism. Regardless of the acid added, potassium sorbate showed a general inactivation effect on yeasts in the products prepared from both FF and SF. Sodium benzoate had a rapid inactivation effect with FF, but with SF, it was effective only in the presence of acetic acid. A strain of Issatchenkia occidentalis was found that was resistant to the combination of this preservative with citric or lactic acids. In FF, ozone showed an initial marked inhibition against yeasts, but later, yeasts were again able to grow. In SF, ozone was a strong inactivating agent when it replaced any of the traditional preservatives. Lactic acid bacteria were always absent in products prepared from FF and apparently were not affected by the different preservative agents in those prepared from SF. The behavior of yeasts and lactic acid bacteria populations in commercial products were similar to those found in experimental treatments.

2008 ◽  
Vol 15 (3) ◽  
pp. 185 ◽  
Author(s):  
E. SAARISALO ◽  
T. JALAVA ◽  
E. SKYTTÄ

The efficiency of a novel strain of lactic acid bacteria inoculant (Lactobacillus plantarum VTT E-78076, E76) on the fermentation quality of wilted silage was studied. Furthermore, the possibility to improve aerobic stability of silages by combining an inoculant and chemical preservatives was investigated. Two experiments were conducted with wilted timothy-meadow fescue herbage (dry matter 429 and 344 g kg-1) using six treatments. In experiment I, E76 (106 cfu g-1 fresh matter (FM)) was applied alone and in combination with sodium benzoate (0.3 g kg-1 grass FM) or low rate of formic acid (0.4 l t-1 FM). In experiment II, E76 and a commercial inoculant were applied alone and in combination with sodium benzoate. Untreated silage and formic acid (4 l t-1 FM) treated silage served as negative and positive controls in both experiments. The effect of sodium benzoate and potassium sorbate in experiment I, on aerobic stability was tested by treating silages prior to aerobic stability measurements. The novel lactic acid bacteria inoculant was equally effective in improving fermentation quality as the commercial inoculant. However, the aerobic stability of both inoculated silages was poorer than that of formic acid treated or the untreated one in one of the experiments. The results suggested that antimicrobial properties of E76 were not effective enough to improve aerobic instability. One option to overcome this problem is to use chemical additives in combination with the inoculants.;


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1737
Author(s):  
Wendy Franco ◽  
Sergio Benavides ◽  
Pedro Valencia ◽  
Cristian Ramírez ◽  
Alejandra Urtubia

Grapes are a source of native yeasts and lactic acid bacteria (LAB); however, the microbial make up is dependent on the grape cultivar and the regional growth conditions. Therefore, the aim of this study was to characterize the yeast and LAB in seven grape cultivars cultivated in Chile. Grape juices were fermented at 25 °C for 7 days. Samples were collected to analyze sugar, organic acids, and ethanol. Microbial evolution was measured with culture-dependent and molecular approaches. Then, a native isolated Candida oleophila was selected for further sequential fermentations with Saccharomyces cerevisiae. The grape cultivars in the Maule showed a diversity of non-Saccharomyces yeasts, with a greater diversity observed at the beginning of the fermentation. However, species from the Hansenasporia, Metschnikowia, Torulaspora, Lachancea, and Candida genera were detected after 7 days, suggesting tolerance to environments rich in ethanol, capability may be associated to the terroir studied, which is characterized by torrid weather and antique and traditional vineyards. The alcoholic fermentation negatively impacted the LAB population, and after 7 days only Leuconostoc mesenteroides was isolated. In the sequential fermentations, C. oleophila was able to produce fermented grape juices with <1.5 g/L glucose, 12.5% (v/v) alcohol, and low concentrations of malic (<1.00 g/L) and succinic (2.05 g/L) acids, while acetic acid reached values >0.3 (g/L). To our knowledge this is the first time C. oleophila has been reported as a potential starter culture for wine production. However, more studies are necessary to fully characterize the potential of C. oleophila on wine attributes.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1432
Author(s):  
Horst Auerbach ◽  
Peter Theobald

Whole-crop rye harvested before maturity represents a valuable forage for silage production. Due to the scarcity of data on fermentation characteristics and aerobic stability (ASTA) and the lack of information on mycotoxin formation during aeration of early-cut rye (ECR) silage after silo opening, we evaluated the effects of different additive types and compositions. Wilted forage was treated with various biological and chemical additives, ensiled in 1.5-L glass jars and stored for 64 days. Fermentation pattern, yeast and mould counts and ASTA were determined at silo opening. In total 34 mycotoxins were analysed in wilted forage and in silage before and after 240 h of air exposure. Chemical additives caused the lowest dry matter (DM) losses during fermentation accompanied with the lowest ethanol production and the highest water-soluble carbohydrate concentration. Aerobic deterioration, which started within two days after silo opening in silage left untreated and inoculated with homofermentative lactic acid bacteria, was prevented by the combined use of hetero- and homofermentative lactic acid bacteria and the chemical additive containing sodium nitrite, hexamethylene tetramine and potassium sorbate. Moreover, these two additives largely restricted the formation of the mycotoxin roquefortine C to < 0.05 mg kg−1 DM after aeration, whereas untreated silage contained 85.2 mg kg−1 DM.


1993 ◽  
Vol 56 (11) ◽  
pp. 972-976 ◽  
Author(s):  
O. M. ABDALLA ◽  
P. M. DAVIDSON ◽  
G. L. CHRISTEN

Effect of lactic acid bacteria starter culture, nisin, hydrogen peroxide, or potassium sorbate on Listeria monocytogenes, Staphylococcus aureus, and Salmonella typhimurium in white pickled cheese made from pasteurized milk with 4% salt and preserved in 4% brine solution at 4°C for 60 d was studied. The starter culture inhibited all three pathogens while antimicrobials did not. Beyond day 50 in curd and day 30 in brine solution, L. monocytogenes was not detected by direct plating in cheese with added starter culture. S. aureus was not detected after day 30 in curd and day 20 in brine solution in the same cheese. S. typhimurium was not detected after day 30 in cheese curd and was not detected in brine solution at any time with lactic acid bacteria starter culture added. The pH of brine solution of starter treatment dropped below 4.7 in all experiments, while antimicrobial treatments all had a pH &gt;5.5.


1970 ◽  
Vol 16 (5) ◽  
pp. 287-297 ◽  
Author(s):  
A. G. Kempton ◽  
S. R. Bobier

The shelf life of vacuum-packed luncheon meats during refrigerated storage was not related to "total" counts since the only organisms that multiplied in this environment were lactic acid bacteria, which formed only a small proportion of the initial population.Bacterial growth curves obtained from several Canadian products were remarkably similar, but the spoilage patterns differed. For example, wiener spoilage was a function of bacterial growth while bologna spoiled from the accumulation of bacterial end products. After 15 weeks at 5 °C, the meats contained 0.6 to 0.8% lactic acid and the pH of comminuted meats dropped below 5.0. Cooked ham contained much less carbohydrate than comminuted meats, and the pH remained above 6.0. Under these conditions, ham is susceptible to putrefaction although this was not observed during this study.It was found that cooking can eliminate all lactic acid bacteria present in the raw meats but the products become recontaminated during slicing and packaging. The cleaning and sanitizing procedure used by the Company that cooperated in this study was efficient, but it was recommended that the packaging room be cleaned more often, and that a selective medium for lactic acid bacteria be used in sanitation surveys.


1999 ◽  
Vol 45 (11) ◽  
pp. 891-897 ◽  
Author(s):  
H Gaudreau ◽  
C P Champagne ◽  
J Conway ◽  
R Degré

Five yeast extracts (YE) were fractionated by ultrafiltration (UF) with 1, 3, and 10 kDa molecular weight cutoff membranes, concentrated by freeze-drying, and the resulting powders of yeast extract filtrates (YEF) were evaluated for their growth-promoting properties on nine cultures of lactic acid bacteria (LAB). There was an increase in α-amino nitrogen content of the YEF powders as the pore size of the UF membranes used to filter the YE solutions decreased. The source of YE had a much greater effect than UF on the growth of LAB. This was also the case for the YEF contents in total and α-amino nitrogen. Growth curves of the LAB showed that maximum growth rate (μmax) data were on average 30% higher with bakers' YE than with brewers' YE, while maximum optical density (ODmax) values were on average 16% higher with bakers' YE. This could be related to the higher nitrogen content of the bakers' YE used in this study. Modification by UF of the YE had no significant influence on the growth of 4 of the 9 LAB strains. The three strains of Lactobacillus casei were negatively influenced by UF, as they did not grow as well in the media containing the YEF obtained after filtering with 1 and 3 kDa membranes. On a total solids basis, the 2.5× retentates from the 10 kDa membrane gave, on average, 4% lower μmax and 5% lower ODmax values as compared to cultures where the corresponding YEF was used as medium supplement. This could also be partially related to the different nitrogen contents of the filtrates and retentates. Key words: Lactococcus, Pediococcus, Lactobacillus, amino acids.


1960 ◽  
Vol 34 (1) ◽  
pp. 16-22
Author(s):  
Akira OBAYASHI ◽  
Sadao IWANO ◽  
Iwao KUSAKA ◽  
Kakuo KITAHARA

1984 ◽  
Vol 64 (640-642) ◽  
pp. 380-394 ◽  
Author(s):  
P. DEIANA ◽  
F. FATICHENTI ◽  
G. A. FARRIS ◽  
G. MOCQUOT ◽  
Roberta LODI ◽  
...  

2015 ◽  
Vol 20 (4) ◽  
pp. 187 ◽  
Author(s):  
Subagiyo Subagiyo ◽  
Sebastian Margino ◽  
Triyanto Triyanto ◽  
Wilis Ari Ari Setyati1,2

Bakteri asam laktat telah lama dikembangkan sebagai probiotik. Penentuan kondisi lingkungan yang optimum untuk pertumbuhan sel serta asam organik memberikan gambaran aktivitas optimum untuk kinerja probiotik baik dalam sistem fisiologi inang maupun dalam sistem bioproses untuk produksi sel dan metabolit. Penelitian ini bertujuan untuk mengetahui pengaruh faktor lingkungan (pH, suhu dan salinitas) terhadap pertumbuhan dan produksi total asam organik tiga isolat bakteri asam laktat yang telah diseleksi dari intestinum udang penaeid. Eksperimen menggunakan  medium deMan, Rogosa and Sharpe (MRS) cair. Perlakuan pH awal meliputi  nilai pH 4, 5 dan 6. Perlakuan suhu meliputi suhu 25, 30 dan 35OC serta perlakuan salinitas  meliputi salinitas 0,75 %, 1,5 % dan 3 %.  Setiap interval 6 jam dilakukan pengambilan sampel kultur bakteri dan penghitungan pertumbuhan berdasarkan perubahan optical density (pada panjang gelombang 600 nm) sedangkan produksi asam laktat dianalisis dengan metode titrimetrik menggunakan NaOH 1 N sebagai larutan titrasinya. Berdasarkan hasil penelitian disimpulkan bahwa suhu, pH awal dan salinitas berpengaruh terhadap pertumbuhan dan produksi asam organik. Nilai kondisi lingkungan terbaik untuk pertumbuhan dapat berbeda dengan nilai terbaik untuk produksi asam organic. Hal ini ditunjukan oleh nilai laju pertumbuhan dan produksi asam laktat tertinggi dari tiga isolat uji terjadi pada suhu, pH awal dan salinitas yang berbeda.  Isolat L12 tumbuh optimum pada suhu 30oC, pH awal 6 dan salinitas 0,75%. Isolat L14 tumbuh optimum pada suhu 30oC, pH awal 6 dan salinitas 1.5%. Isolat L 21 tumbuh optimum pada suhu 30 oC, pH awal 6 dan salinitas 1.5%. Kata kunci: bakteri asam laktat, suhu, pH, salinitas, asamorganik, pertumbuhan, Lactic acid bacteria are widely distributed in intestinal tracts of various animals where they live as normal flora.Strains of lactic acid bacteria are the most common microbes employed as probiotics, The optimum condition for growth are important to mass production and to determined parameters most suitable for growth. The effects of  temperature, pH and salinity on the growth and production of lactic acid from the three shrimp intestinal lactic acid bacteria isolates were conducted using bacth culture in a flask. These variables for growth were determined based on the growth curves and lactic acid production. Data from the flask batch experiment demonstrated that the best initial pH and temperature  for growth of isolat L12 ,L14 and L21 were found to be pH 6 and 30 OC.  Salinity (NaCl concentration) 0,75% were the best for growth of isolat L12. Salnity  1,5 % were best for growth of isolat L14 and L21. Key words : growth, temperature, pH, salinity, lactic aid bacteria


Sign in / Sign up

Export Citation Format

Share Document