Evaluation of a lactobacillus inoculant as an additive for silage fed to heifers

Author(s):  
P. O' Kiely

When grass with an adequate content of fermentable substrate and epiphytic lactic acid bacteria is ensiled properly, the fermentation which follows is normally considered satisfactory. This fermentation can be altered by various categories of additive such as acids, sugars and inoculants, each of which can influence the fermentation differently. The experiment reported compared the fermentation products, aerobic stability and animal performance for silages made using formic acid or a Lactobacillus plantarum inoculant with well preserved silage made without additive treatment.A 42 day regrowth of Lolium multiflorum (cv. Lemtal) was harvested without wilting using two precision - chop harvesters. Alternate loads of grass were ensiled with (a) no additive, (b) formic acid (850g/kg) at 3.0 1/t or (c)inoculant (Ecosyl - ICI plc) at 3 1/t (separate harvester). The inoculant was constituted immediately before use and was applied in accordance with the manufacturers instructions. Harvesting was completed and the silos sealed within 26 hours of mowing. The silos were opened after 113 days.

2003 ◽  
Author(s):  
Zwi G. Weinberg ◽  
Richard E. Muck ◽  
Nathan Gollop ◽  
Gilad Ashbell ◽  
Paul J. Weimer ◽  
...  

The overall objective of the whole research was to elucidate the mechanisms by which LAB silage inoculants enhance ruminant performance. The results generated will permit the development of better silage inoculants that maximize both silage preservation and animal performance. For this one-year BARD feasibility study, the objectives were to: 1. determine whether lactic acid bacteria (LAB) used in inoculants for silage can survive in rumen fluid (RF) 2.select the inoculants that survived best, and 3. test whether LAB silage inoculants produce bacteriocins-like substances. The most promising strains will be used in the next steps of the research. Silage inoculants containing LAB are used in order to improve forage preservation efficiency. In addition, silage inoculants enhance animal performance in many cases. This includes improvements in feed intake, liveweight gain and milk production in 25-40% of studies reviewed. The cause for the improvement in animal performance is not clear but appears to be other than direct effect of LAB inoculants on silage fermentation. Results from various studies suggest a possible probiotic effect. Our hypothesis is that specific LAB strains interact with rumen microorganisms which results in enhanced rumen functionality and animal performance. The first step of the research is to determine whether LAB of silage inoculants survive in RF. Silage inoculants (12 in the U.S. and 10 in Israel) were added to clarified and strained RF. Inoculation rate was 10 ⁶ (clarified RF), 10⁷ (strained RF) (in the U.S.) and 10⁷, 10⁸ CFU ml⁻¹ in Israel (strained RF). The inoculated RF was incubated for 72 and 96 h at 39°C, with and without 5 g 1⁻¹ glucose. Changes in pH, LAB numbers and fermentation products were monitored throughout the incubation period. The results indicated that LAB silage inoculants can survive in RF. The inoculants with the highest counts after 72 h incubation in rumen fluid were Lactobacillus plantarum MTD1 and a L. plantarum/P. cerevisiae mixture (USA) and Enterococcus faecium strains and Lactobacillus buchneri (Israel). Incubation of rumen fluid with silage LAB inoculants resulted in higher pH values in most cases as compared with that of un-inoculated controls. The magnitude of the effect varied among inoculants and typically was enhanced with the inoculants that survived best. This might suggest the mode of action of LAB silage inoculants in the rumen as higher pH enhances fibrolytic microorganisms in the rumen. Volatile fatty acid (VFA) concentrations in the inoculated RF tended to be lower than in the control RF after incubation. However, L. plalltarull1 MTDI resulted in the highest concentrations of VFA in the RF relative to other inoculants. The implication of this result is not as yet clear. In previous research by others, feeding silages which were inoculated with this strain consistently enhanced animal performance. These finding were recently published in Weinberg et.al.. (2003), J. of Applied Microbiology 94:1066-1071 and in Weinberg et al.. (2003), Applied Biochemistry and Biotechnology (accepted). In addition, some strains in our studies have shown bacteriocins like activity. These included Pediococcus pentosaceus, Enterococcus faecium and Lactobacillus plantarum Mill 1. These results will enable us to continue the research with the LAB strains that survived best in the rumen fluid and have the highest potential to affect the rumen environment.


Author(s):  
C S Mayne

Recent research at this Institute has shown marked improvements in animal performance following the use of bacterial inoculants as silage additives (Gordon, 1989 and Mayne, 1990). Other studies with additives based on antimicrobial carboxylic salts (Maxgrass - BP Chemicals) have also shown large improvements in animal performance relative to untreated silage (Chamberlain et al, 1990). However with constraints on milk output in the form of milk quotas, it is important to investigate the potential “concentrate sparing” effect of these differing silage additives, whilst producing a constant yield of milk constituents.Five silages with a range of fermentation characteristics were produced by ensiling first regrowth herbage either untreated (C) or treated with four differing silage additives including: an inoculant of lactic acid bacteria (I); an inoculant of lactic acid bacteria plus enzymes (I+E); formic acid applied at 2.54 litres/t grass (FA) and antimicrobial carboxylic acids applied at 5.95 litres/t grass (CA).


2019 ◽  
Vol 7 (1-2) ◽  
pp. 127-132
Author(s):  
Judit Peter Szucs ◽  
Agnes Suli ◽  
Timea Suli Zakar ◽  
Elizabet Berecz ◽  
Mate Pek

The object of the trial was to study the effect of some lactic acid bacteria strains on the fermentation and aerobic stability of whole plant maize silages.The whole plant maize raw material was 32% DM, in soft cheddar stage of grain ripeness. It was ensiled in 4.2 litre capacity glass micro-size silos in 5 replicates /each treatment and stored on constant air conditioned room temperature (22 oC) during 95 days. The average packing density of raw material was 211 kg DM/m3.The applied treatments: 1. Untreated control maize, 2. Enterococcus faecium 100,000 CFU/g fresh maize (FM), 3. Lactobacillus plantarum 50,000 CFU/g FM + Enterococcus faecium 50,000 CFU/g FM, 4. Lactococcus lactis 100,000 CFU/g FM, 5. Lactobacillus plantarum 50,000 CFU/g FM + Lactococcus lactis 50,000 CFU/g FM, 6. Lactobacillus plantarum 100,000 CFU/g FM.Aerobic stability study:  Applied Honig (1990 system).The main experiences are the following: Applied lactic acid bacteria strains improved the quality of fermentation of maize in general compare to untreated control one.Lactic acid bacteria strains significantly stimulated lactic acid production and decreased propionic and butyric acid production. The origin of ammonia decreased also under influence of lactic acid bacteria strains in unaerobic conditions.Enterococcus faecium and.Lactococcus lactis are not able to protect the maize silages against the aerobic deterioration with the applied dosage.  Lactobacillus plantarum itself produced the most favourable fermentation characteristics and protected the aerobic stability of silage the most effectively (during 4 day) compare to all other treated maize silages.


2014 ◽  
Vol 54 (2) ◽  
pp. 165
Author(s):  
H. Mohammadzadeh ◽  
M. Khorvash ◽  
G. R. Ghorbani

A multi-species lactic acid bacterial inoculant (Lactisil maize, LM) was applied to whole-crop corn at different maturities in laboratory silos, to evaluate its effects on biochemical characteristics and aerobic stability. The corn crop was harvested at hard dough (HD, 253.1 g/DM kg), one-third milkline (ML, 293.7 g/DM kg) and one-third milkline with a killing frost (MLF, 297.6 g/DM kg). Crops were chopped to a 2.5-cm theoretical cut length, subsampled and treated with two levels of inoculant (LB1 = 1.5 × 105 cfu/g forage, LB2 = 3 × 105 cfu/g forage) or untreated (WO). The chemical composition of MLF crops was very similar to that of ML crops. However, lower (P < 0.01) numbers of lactic acid bacteria and higher numbers of yeast were enumerated in MLF than in ML crops. Higher percentages of DM and neutral detergent fibre and higher pH, but lower (P < 0.01) concentrations of water soluble carbohydrate and crude protein were measured in ML and MLF crops than in HD crops. Application of the inoculant increased (P < 0.01) concentrations of volatile fatty acids, neutral detergent fibre and acid detergent fibre in silages. Lactic acid concentration increased (P < 0.01) in HD treatments with an increasing level of inoculant. In contrast, the highest (P < 0.01) lactic acid concentration was measured in LB1 treatment compared with WO and LB2 in ML and MLF silages. Silages prepared from ML and MLF crops had higher (P < 0.01) lactic and acetic acid concentrations but lower (P < 0.01) butyric acid concentrations than did those prepared from HD. The pH in LB1 and LB2 silages was higher (P < 0.01) than that measured in WO silages. Aerobic stability was not influenced by inoculant treatment but low-DM silages were more (P < 0.01) resistant to spoilage. Frost-killed corn crops had a good potential to produce well fermented silage. Using LM resulted in silages with slightly higher fermentation products but it failed to improve aerobic stability of silage after 120 days of ensiling. These results indicated that inoculation of corn crops with LM for a short-duration ensilage period cannot enhance aerobic stability of silages due to insufficient acetic acid production from lactic acid conversion.


2019 ◽  
Vol 59 (8) ◽  
pp. 1584
Author(s):  
Huazhe Si ◽  
Hanlu Liu ◽  
Zhipeng Li ◽  
Weixiao Nan ◽  
Chunai Jin ◽  
...  

Changes in the microbial community are closely related to the fermentation of silage. However, how host genetic variation shapes the community structure of the silage microbiota and its metabolic phenotype is poorly understood. The objective of present study was to evaluate the effects of the application of the homo-fermentative Lactobacillus plantarum and hetero-fermentative Lactobacillus buchneri strains to lucerne silage on the fermentation characteristics, aerobic stability, and microbial community and their correlations. The three silages treated with L. plantarum or L. buchneri were well preserved and had significantly lower pH values, butyric acid, propionic acid, and ammonia-N concentrations, and significantly higher residual water-soluble carbohydrate, dry matter and lactic acid contents than the controls. The treated groups had more lactic acid bacteria and lower quantities of other bacteria in their microbial communities. Inoculation of lactic acid bacteria influenced the abundances of other bacteria and controlled the silage fermentation characteristics. L. buchneri inhibited the abundance of Enterobacter_ludwigii to increase the crude protein content, L. plantarum improve the neutral detergent fibre content by affecting the abundance of Arthrobacter_sp._Ens13. In conclusion, the application of L. plantarum and L. buchneri improved the quality of lucerne silage fermentation, and L. buchneri resulted in greater improvements after aerobic exposure.


2008 ◽  
Vol 15 (3) ◽  
pp. 185 ◽  
Author(s):  
E. SAARISALO ◽  
T. JALAVA ◽  
E. SKYTTÄ

The efficiency of a novel strain of lactic acid bacteria inoculant (Lactobacillus plantarum VTT E-78076, E76) on the fermentation quality of wilted silage was studied. Furthermore, the possibility to improve aerobic stability of silages by combining an inoculant and chemical preservatives was investigated. Two experiments were conducted with wilted timothy-meadow fescue herbage (dry matter 429 and 344 g kg-1) using six treatments. In experiment I, E76 (106 cfu g-1 fresh matter (FM)) was applied alone and in combination with sodium benzoate (0.3 g kg-1 grass FM) or low rate of formic acid (0.4 l t-1 FM). In experiment II, E76 and a commercial inoculant were applied alone and in combination with sodium benzoate. Untreated silage and formic acid (4 l t-1 FM) treated silage served as negative and positive controls in both experiments. The effect of sodium benzoate and potassium sorbate in experiment I, on aerobic stability was tested by treating silages prior to aerobic stability measurements. The novel lactic acid bacteria inoculant was equally effective in improving fermentation quality as the commercial inoculant. However, the aerobic stability of both inoculated silages was poorer than that of formic acid treated or the untreated one in one of the experiments. The results suggested that antimicrobial properties of E76 were not effective enough to improve aerobic instability. One option to overcome this problem is to use chemical additives in combination with the inoculants.;


2019 ◽  
Vol 59 (8) ◽  
pp. 1528
Author(s):  
Huazhe Si ◽  
Hanlu Liu ◽  
Zhipeng Li ◽  
Weixiao Nan ◽  
Chunai Jin ◽  
...  

Changes in the microbial community are closely related to the fermentation of silage. However, how host genetic variation shapes the community structure of the silage microbiota and its metabolic phenotype is poorly understood. The objective of present study was to evaluate the effects of the application of the homo-fermentative Lactobacillus plantarum and hetero-fermentative Lactobacillus buchneri strains to lucerne silage on the fermentation characteristics, aerobic stability, and microbial community and their correlations. The three silages treated with L. plantarum or L. buchneri were well preserved and had significantly lower pH values, butyric acid, propionic acid, and ammonia-N concentrations, and significantly higher residual water-soluble carbohydrate, dry matter and lactic acid contents than the controls. The treated groups had more lactic acid bacteria and lower quantities of other bacteria in their microbial communities. Inoculation of lactic acid bacteria influenced the abundances of other bacteria and controlled the silage fermentation characteristics. L. buchneri inhibited the abundance of Enterobacter_ludwigii to increase the crude protein content, L. plantarum improve the neutral detergent fibre content by affecting the abundance of Arthrobacter_sp._Ens13. In conclusion, the application of L. plantarum and L. buchneri improved the quality of lucerne silage fermentation, and L. buchneri resulted in greater improvements after aerobic exposure.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 963
Author(s):  
Jon Kepa Izaguirre ◽  
Leire Barañano ◽  
Sonia Castañón ◽  
Itziar Alkorta ◽  
Luis M. Quirós ◽  
...  

Soybeans and soy-based products contain isoflavones which can be used for nutraceutical and medical applications. In soybeans and in unfermented soy foods, isoflavones are normally present as glycosides. Isoflavone glycosides can be enzymatically converted to isoflavone aglycones, thus releasing the sugar molecule. The effective absorption of isoflavones in humans requires the bioconversion of isoflavone glycosides to isoflavone aglycones through the activity of the enzyme β-glucosidase. The objective was to assess the capacity of 42 bacterial strains (belonging to Lactobacillus, Streptococcus and Enterococcus) to produce β-glucosidase activity. The strain that showed the highest β-glucosidase activity (Lactobacillus plantarum 128/2) was then used for the optimization of the bioconversion of genistin and daidzin present in commercial soymilk to their aglycone forms genistein and daidzein. The contribution of process parameters (temperature, inoculum size, time) to the efficiency of such bioactivation was tested. Lactobacillus plantarum 128/2 was able to completely bioactivate soymilk isoflavones under the following conditions: 25 °C temperature, 2% inoculum size and 48 h process time. These results confirm the suitability of lactic acid bacteria for the bioactivation of isoflavones present in soymilk and provide an interesting candidate (L. plantarum 182/2) for food industries to perform this transformation.


2021 ◽  
Vol 11 (13) ◽  
pp. 5765
Author(s):  
Joo-Yun Kim ◽  
Eun-Jung Choi ◽  
Jae-Ho Lee ◽  
Myeong-Seok Yoo ◽  
Keon Heo ◽  
...  

Vitamin B2, also known as riboflavin, is essential for maintaining human health. The purpose of this study was to isolate novel lactic acid bacteria that overproduce vitamin B2 and to validate their potential as probiotics. In this study, Lactobacillus plantarum HY7715 (HY7715) was selected among lactic acid bacteria isolated from Kimchi. HY7715 showed a very high riboflavin-producing ability compared to the control strain due to the high expression of ribA, ribB, ribC, ribH, and ribG genes. HY7715 produced 34.5 ± 2.41 mg/L of riboflavin for 24 h without consuming riboflavin in the medium under optimal growth conditions. It was able to produce riboflavin in an in vitro model of the intestinal environment. In addition, when riboflavin deficiency was induced in mice through nutritional restriction, higher levels of riboflavin were detected in plasma and urine in the HY7715 administration group than in the control group. HY7715 showed high survival rate in simulated gastrointestinal conditions and had antibiotic resistance below the cutoff MIC value suggested by the European Food Safety Authority; moreover, it did not cause hemolysis. In conclusion, HY7715 could be considered a beneficial probiotic strain for human and animal applications, suggesting that it could be a new alternative to address riboflavin deficiency.


Sign in / Sign up

Export Citation Format

Share Document