scholarly journals Additive Type Affects Fermentation, Aerobic Stability and Mycotoxin Formation during Air Exposure of Early-Cut Rye (Secale cereale L.) Silage

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1432
Author(s):  
Horst Auerbach ◽  
Peter Theobald

Whole-crop rye harvested before maturity represents a valuable forage for silage production. Due to the scarcity of data on fermentation characteristics and aerobic stability (ASTA) and the lack of information on mycotoxin formation during aeration of early-cut rye (ECR) silage after silo opening, we evaluated the effects of different additive types and compositions. Wilted forage was treated with various biological and chemical additives, ensiled in 1.5-L glass jars and stored for 64 days. Fermentation pattern, yeast and mould counts and ASTA were determined at silo opening. In total 34 mycotoxins were analysed in wilted forage and in silage before and after 240 h of air exposure. Chemical additives caused the lowest dry matter (DM) losses during fermentation accompanied with the lowest ethanol production and the highest water-soluble carbohydrate concentration. Aerobic deterioration, which started within two days after silo opening in silage left untreated and inoculated with homofermentative lactic acid bacteria, was prevented by the combined use of hetero- and homofermentative lactic acid bacteria and the chemical additive containing sodium nitrite, hexamethylene tetramine and potassium sorbate. Moreover, these two additives largely restricted the formation of the mycotoxin roquefortine C to < 0.05 mg kg−1 DM after aeration, whereas untreated silage contained 85.2 mg kg−1 DM.

2011 ◽  
Vol 236-238 ◽  
pp. 305-308
Author(s):  
Jian Guo Zhang ◽  
Qin Hua Liu ◽  
Fu Yu Yang

To investigate the nutritive and ensiling characteristics of sweet corn processing by-products, the chemical compositions of corn bracts and cobs were analyzed and the effects of wilting and additives on the fermentation quality and aerobic stability were measured. The research results showed: Corn bracts and cobs had low fiber content and high nitrogen free extract content (> 61% DM),with high nutritive value; Corn bracts and cobs were of high water soluble carbohydrate contents (> 10% DM), low buffering capacity (< 150 mE/kg DM), more lactic acid bacteria (> 107cfu/g FM), they might be well preserved without any treatments, but their aerobic stability was poor; Barn and lactic acid bacteria addition had few effect on the fermentation except for reducing butyric acid content, wilting tended to increase lactic acid content and reduce the contents of volatile fatty acids.


2014 ◽  
Vol 54 (2) ◽  
pp. 165
Author(s):  
H. Mohammadzadeh ◽  
M. Khorvash ◽  
G. R. Ghorbani

A multi-species lactic acid bacterial inoculant (Lactisil maize, LM) was applied to whole-crop corn at different maturities in laboratory silos, to evaluate its effects on biochemical characteristics and aerobic stability. The corn crop was harvested at hard dough (HD, 253.1 g/DM kg), one-third milkline (ML, 293.7 g/DM kg) and one-third milkline with a killing frost (MLF, 297.6 g/DM kg). Crops were chopped to a 2.5-cm theoretical cut length, subsampled and treated with two levels of inoculant (LB1 = 1.5 × 105 cfu/g forage, LB2 = 3 × 105 cfu/g forage) or untreated (WO). The chemical composition of MLF crops was very similar to that of ML crops. However, lower (P < 0.01) numbers of lactic acid bacteria and higher numbers of yeast were enumerated in MLF than in ML crops. Higher percentages of DM and neutral detergent fibre and higher pH, but lower (P < 0.01) concentrations of water soluble carbohydrate and crude protein were measured in ML and MLF crops than in HD crops. Application of the inoculant increased (P < 0.01) concentrations of volatile fatty acids, neutral detergent fibre and acid detergent fibre in silages. Lactic acid concentration increased (P < 0.01) in HD treatments with an increasing level of inoculant. In contrast, the highest (P < 0.01) lactic acid concentration was measured in LB1 treatment compared with WO and LB2 in ML and MLF silages. Silages prepared from ML and MLF crops had higher (P < 0.01) lactic and acetic acid concentrations but lower (P < 0.01) butyric acid concentrations than did those prepared from HD. The pH in LB1 and LB2 silages was higher (P < 0.01) than that measured in WO silages. Aerobic stability was not influenced by inoculant treatment but low-DM silages were more (P < 0.01) resistant to spoilage. Frost-killed corn crops had a good potential to produce well fermented silage. Using LM resulted in silages with slightly higher fermentation products but it failed to improve aerobic stability of silage after 120 days of ensiling. These results indicated that inoculation of corn crops with LM for a short-duration ensilage period cannot enhance aerobic stability of silages due to insufficient acetic acid production from lactic acid conversion.


2008 ◽  
Vol 15 (3) ◽  
pp. 185 ◽  
Author(s):  
E. SAARISALO ◽  
T. JALAVA ◽  
E. SKYTTÄ

The efficiency of a novel strain of lactic acid bacteria inoculant (Lactobacillus plantarum VTT E-78076, E76) on the fermentation quality of wilted silage was studied. Furthermore, the possibility to improve aerobic stability of silages by combining an inoculant and chemical preservatives was investigated. Two experiments were conducted with wilted timothy-meadow fescue herbage (dry matter 429 and 344 g kg-1) using six treatments. In experiment I, E76 (106 cfu g-1 fresh matter (FM)) was applied alone and in combination with sodium benzoate (0.3 g kg-1 grass FM) or low rate of formic acid (0.4 l t-1 FM). In experiment II, E76 and a commercial inoculant were applied alone and in combination with sodium benzoate. Untreated silage and formic acid (4 l t-1 FM) treated silage served as negative and positive controls in both experiments. The effect of sodium benzoate and potassium sorbate in experiment I, on aerobic stability was tested by treating silages prior to aerobic stability measurements. The novel lactic acid bacteria inoculant was equally effective in improving fermentation quality as the commercial inoculant. However, the aerobic stability of both inoculated silages was poorer than that of formic acid treated or the untreated one in one of the experiments. The results suggested that antimicrobial properties of E76 were not effective enough to improve aerobic instability. One option to overcome this problem is to use chemical additives in combination with the inoculants.;


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 518
Author(s):  
Vanessa P. Silva ◽  
Odilon G. Pereira ◽  
Eliana S. Leandro ◽  
Rosinea A. Paula ◽  
Mariele C. N. Agarussi ◽  
...  

The first part of the study aimed to isolate, characterize, and identify wild lactic acid bacteria (LAB) strains from alfalfa silage produced in a tropical area. LAB strains were isolated from alfalfa silage ensiled for 1, 3, 7, 14, 28, and 56 days (d) and were identified by sequencing the 16S rRNA gene. The second part aimed to investigate the effects of wild LAB strains on the nutritive and fermentative characteristics of alfalfa silage. This trial was conducted according to a completely randomized design in a 4 × 2 factorial scheme [four inoculants (I) × two harvests (H)], (n = 4). The inoculants were: (1) no inoculant (CTRL), (2) Lactobacillus pentosus (AV 14.17); (3) L. pentosus + Lactobacillus brevis + Pediococcus acidilactici (Combo); and (4) commercial inoculant (CI). Alfalfa forage (7 kg) was ensiled in 10 L buckets and opened after 90 d. Seventy-seven strains were isolated. Pediococcus, Lactobacillus, and Weissella represented 52.0, 24.7, and 20.8% of the isolates, respectively. For the first harvest, Combo, CI, and all inoculated silages showed lower acid detergent fiber ADF, neutral detergent fiber (NDF), and ammonia nitrogen (NH3-N), respectively. Silage fermented with AV14.17 presented greater residual water-soluble carbohydrate (WSC) in the second harvest and showed the lowest pH in both harvests. AV14.17 strain has potential as an inoculant for alfalfa silage production.


2021 ◽  
Vol 9 (1) ◽  
pp. 52-59
Author(s):  
Xuxiong Tao ◽  
Chongwen Ji ◽  
Sifan Chen ◽  
Jie Zhao ◽  
Siran Wang ◽  
...  

This study was conducted to investigate the effects of adding citric acid residue (CAR) with or without lactic acid bacteria (LAB) to Napier grass (Cenchrus purpureus; syn. Pennisetum purpureum) cv. Sumu No. 2 at ensiling on the fermentation quality and aerobic stability of the resulting silage. Treatments included: Control (Napier grass forage without additives); and Napier grass inoculated with lactic acid bacteria (Lactobacillus plantarum and L. buchneri) at 1 × 106 cfu/gfresh weight (FW) forage (LAB) or 36 g citric acid residue/kg FW forage (CAR) or a mixture of CAR and LAB (CL). Forty-five days after ensiling the silages were tested for chemical and microbial composition and an aerobic stability test was conducted. The addition of CAR with or without LAB increased the DM and lactic acid concentrations in silage and decreased pH plus acetic acid, ammonia nitrogen (NH3-N), neutral detergent fiber and cellulose concentrations relative to Control. The pH in LAB silage was lower than in Control, while lactic acid concentration was higher. During the first 2 days of aerobic exposure, all additives increased the water-soluble carbohydrate (WSC) and lactic acid concentrations and decreased pH plus NH3-N and acetic acid concentrations. Moreover, CL silages had the highest WSC and the lowest NH3-N and acetic acid concentrations during aerobic exposure. However, all additives failed to improve the aerobic stability of the silage. While CAR with or without LAB inoculant improved the fermentation quality of silage made from Napier grass, more studies are warranted to identify additives which can improve aerobic stability of the silage after opening.


Author(s):  
Ahmet Aslım ◽  
Berrin Okuyucu ◽  
Fisun Koç

This study investigated the effects of different levels of propionic acid addition on the aerobic stability characteristics of the total mixture ration. In the study, the effects of four different levels of propionic acid-based additives (0, 1.5, 3.0, 4.5%) on storage conditions of 26°C and 30°C. Feed samples were stored for 7 days, 3 replicates for each treatment group. Chemical and microbiological parameters were analysed in feed samples during aerobic stability. Temperature values and ambient temperature in each treatment were measured and recorded through temperature sensors for 7 days. The addition of additives in the study decreased the pH, dry matter, neutral detergent fiber, and yeast contents of total mixed ration, increased crude protein, eter extract, water soluble carbohydrate, lactic acid, and lactic acid bacteria contents and prevented mold growth. As a result of the research, the addition of 4.5% propionic acid allowed the total mixed ration to remain stable at 26°C for 7 days and 30°C for 5 days.


2019 ◽  
Vol 59 (8) ◽  
pp. 1584
Author(s):  
Huazhe Si ◽  
Hanlu Liu ◽  
Zhipeng Li ◽  
Weixiao Nan ◽  
Chunai Jin ◽  
...  

Changes in the microbial community are closely related to the fermentation of silage. However, how host genetic variation shapes the community structure of the silage microbiota and its metabolic phenotype is poorly understood. The objective of present study was to evaluate the effects of the application of the homo-fermentative Lactobacillus plantarum and hetero-fermentative Lactobacillus buchneri strains to lucerne silage on the fermentation characteristics, aerobic stability, and microbial community and their correlations. The three silages treated with L. plantarum or L. buchneri were well preserved and had significantly lower pH values, butyric acid, propionic acid, and ammonia-N concentrations, and significantly higher residual water-soluble carbohydrate, dry matter and lactic acid contents than the controls. The treated groups had more lactic acid bacteria and lower quantities of other bacteria in their microbial communities. Inoculation of lactic acid bacteria influenced the abundances of other bacteria and controlled the silage fermentation characteristics. L. buchneri inhibited the abundance of Enterobacter_ludwigii to increase the crude protein content, L. plantarum improve the neutral detergent fibre content by affecting the abundance of Arthrobacter_sp._Ens13. In conclusion, the application of L. plantarum and L. buchneri improved the quality of lucerne silage fermentation, and L. buchneri resulted in greater improvements after aerobic exposure.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Y. Acosta Aragón ◽  
J. Jatkauskas ◽  
V. Vrotniakiene

The effect of inoculation on nutrient content, fermentation, aerobic stability, and beef cattle performance for whole-plant corn silage treated with a commercial product (blend of homo- and heterofermentative lactic acid bacteria, BSM, blend of Enterococcus faecium, Lactobacillus plantarum, and Lactobacillus brevis, DSM numbers 3530, 19457, and 23231, resp.), was compared to a control treatment with no silage additives (CT). The material had a DM of 323 g/kg, crude protein, and water-soluble carbohydrate concentrations of 87.9 and 110.5 g/kg DM, respectively. BSM increased the fermentation rate with a significantly deeper pH (P<0.01), a significant increase in the total organic acids concentration (P<0.05), more lactic acid (P<0.01), and numerically more acetic acid compared to CT. BSM significantly decreased the concentrations of butyric acid (P<0.01), ethanol, and ammonia-N compared to the CT. BSM-treated silage decreased DM by 3.0 % (P<0.01) and had a higher digestible energy and a higher metabolizable energy concentration by 2.3 (P<0.01) and 1.00 % (P<0.05), respectively, compared to untreated silage. Aerobic stability improved by more than 2 days in BSM silage. The DM intake of silage treated with BSM increased by 6.14 %, and improved weight gain and the feed conversion by 8.0 (P<0.01) and 3.4%.


Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1733
Author(s):  
Ya Tao ◽  
Dongze Niu ◽  
Feng Li ◽  
Sasa Zuo ◽  
Qizhong Sun ◽  
...  

Oxytropis glabra (OG) is a leguminous forage that is potentially valuable for solving the shortage of feed for livestock production, while, in large quantities, it may be toxic because of its swainsonine (SW) content. In this study, OG was ensiled with whole-plant corn (Zea mays L.) at 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, and 0:10 ratios on a fresh matter basis, and, after 60 d of ensiling, the chemical composition, fermentation characteristic, SW removal rate, lactic acid bacteria (LAB) populations, and their capabilities for SW removal were analyzed. As the proportion of corn in the silage increased, the pH, as well as the propionic acid, ammonia-N, dry matter, crude protein, and SW contents, decreased linearly, while the lactic acid, neutral detergent fiber, and residual water-soluble carbohydrate contents increased linearly. Lactobacillus plantarum was the most common microorganism present in all mixture silages. Lactobacillus amylovorus and Lactobacillusbrevis were prevalent at lower ratios of corn to OG. Meanwhile, the LAB strains belong to L. amylovorus and L. plantarum had a higher SW removal rate. Our results suggested that ensiling OG with whole-plant corn improves fermentation and decreases SW content, and that 5:5 is the optimal ratio, so this type of mixed silage could make OG useable for ruminant production.


Sign in / Sign up

Export Citation Format

Share Document