Fermentation quality and aerobic stability of mulberry silage prepared with lactic acid bacteria and propionic acid

2019 ◽  
Vol 90 (4) ◽  
pp. 513-522 ◽  
Author(s):  
Ying‐Chao Zhang ◽  
Dong‐Xia Li ◽  
Xue‐Kai Wang ◽  
Yan‐Li Lin ◽  
Qing Zhang ◽  
...  
2011 ◽  
Vol 347-353 ◽  
pp. 189-192
Author(s):  
Hui Li Wang ◽  
Qi Zhong Sun ◽  
Fu Yu Yang ◽  
Chun Cheng Xu

This experiment was conducted to evaluate the effect of ensiling on fermentation quality and aerobic stability of a total mixed ration (TMR) containing wet brewers’ grains and corn straw. During the ensiling period, pH fell dramatically from 6.00 to 3.92 at the initial 3 days, then it maintained relatively stable. Lactic acid concentration firstly increased rapidly then it became slowly to reach 3.21% at day 28 post-ensiling. No propionic acid or butyric acid was observed throughout the ensiling. When exposed to air, the temperature of TMR increased quickly to reach a maximum of about 45°C at the 6-day, then it tended to decline until day 9. Later, it had another relative low peak at the 10-day, then it dropped slowly to be equal to air temperature. For TMR silage, no heat production or mold were detected in the entire period. In addition, during the days of exposure, the pH for TMR varied from 6.0-8.7, while TMR silages had no significant differences (3.86 to 3.87). The number of lactic acid bacteria (LAB) for the TMR decreased from the initial 3.2×103cfu g-1to below detectable levels and yeast counts increased by 1000 times. However, the TMR silage had no significant change in LAB and yeast counts. These results indicated that the TMR silage showed great quality and aerobic stability. Overall, fermentation plays an important part in helping total mixed ration silage forming a good aerobic stability.


2020 ◽  
Vol 19 (1) ◽  
pp. 744-752
Author(s):  
Xuxiong Tao ◽  
Sifan Chen ◽  
Jie Zhao ◽  
Siran Wang ◽  
Zhihao Dong ◽  
...  

2021 ◽  
pp. 395-410
Author(s):  
Tânia Mara Becher Ribas ◽  
◽  
Mikael Neumann ◽  
Egon Henrique Horst ◽  
Fernando Braga Cristo ◽  
...  

The objective was to evaluate the efficiency of two bacterial inoculants, 11CFT and 11C33, with different genera of lactic acid bacteria on the chemical and fermentation composition of the silage, and the temperature and pH behavior of the silage during the feed out period. The experimental design used was randomized blocks, with three treatments: corn silage without inoculant (control); corn silage with 11CFT inoculant (consisting of strains of Lactobacillus buchneri and L. casei); and corn silage with 11C33 inoculant (consisting of strains of L. buchneri, L. plantarum and Enterococcus faecium). The use of both inoculants increased the concentration of lactic acid in the silage (22.42 g kg-1 for control against 36.00 and 33.33 g kg-1 for 11CFT and 11C33, respectively) and reduced aerobic dry matter losses. The silage treated with 11C33 obtained a higher concentration of acetic acid (17.44 g kg-1) and propionic acid (2.08 g kg-1). The 11CFT inoculant provided a lower concentration of ethanol, however, without differing from the silage with 11C33 (0.70 and 1.61 g kg-1, respectively). Even without variations in temperature and pH at silage unloading, the use of the 11C33 inoculant generated a higher concentration of acetic and propionic acid, providing better aerobic stability days after unloading. Both inoculants also improved the in situ ruminal digestibility of corn silage compared to control silage. They provide an increase in the content of lactic and propionic acids, which assist to reduce dry matter losses and ethanol production. There were no variations in temperature and pH at the silo unloading, however, the use of the 11C33 inoculant generated a higher concentration of acetic and propionic acids providing better aerobic stability after exposure to air.


2021 ◽  
Vol 9 (1) ◽  
pp. 52-59
Author(s):  
Xuxiong Tao ◽  
Chongwen Ji ◽  
Sifan Chen ◽  
Jie Zhao ◽  
Siran Wang ◽  
...  

This study was conducted to investigate the effects of adding citric acid residue (CAR) with or without lactic acid bacteria (LAB) to Napier grass (Cenchrus purpureus; syn. Pennisetum purpureum) cv. Sumu No. 2 at ensiling on the fermentation quality and aerobic stability of the resulting silage. Treatments included: Control (Napier grass forage without additives); and Napier grass inoculated with lactic acid bacteria (Lactobacillus plantarum and L. buchneri) at 1 × 106 cfu/gfresh weight (FW) forage (LAB) or 36 g citric acid residue/kg FW forage (CAR) or a mixture of CAR and LAB (CL). Forty-five days after ensiling the silages were tested for chemical and microbial composition and an aerobic stability test was conducted. The addition of CAR with or without LAB increased the DM and lactic acid concentrations in silage and decreased pH plus acetic acid, ammonia nitrogen (NH3-N), neutral detergent fiber and cellulose concentrations relative to Control. The pH in LAB silage was lower than in Control, while lactic acid concentration was higher. During the first 2 days of aerobic exposure, all additives increased the water-soluble carbohydrate (WSC) and lactic acid concentrations and decreased pH plus NH3-N and acetic acid concentrations. Moreover, CL silages had the highest WSC and the lowest NH3-N and acetic acid concentrations during aerobic exposure. However, all additives failed to improve the aerobic stability of the silage. While CAR with or without LAB inoculant improved the fermentation quality of silage made from Napier grass, more studies are warranted to identify additives which can improve aerobic stability of the silage after opening.


2008 ◽  
Vol 15 (3) ◽  
pp. 185 ◽  
Author(s):  
E. SAARISALO ◽  
T. JALAVA ◽  
E. SKYTTÄ

The efficiency of a novel strain of lactic acid bacteria inoculant (Lactobacillus plantarum VTT E-78076, E76) on the fermentation quality of wilted silage was studied. Furthermore, the possibility to improve aerobic stability of silages by combining an inoculant and chemical preservatives was investigated. Two experiments were conducted with wilted timothy-meadow fescue herbage (dry matter 429 and 344 g kg-1) using six treatments. In experiment I, E76 (106 cfu g-1 fresh matter (FM)) was applied alone and in combination with sodium benzoate (0.3 g kg-1 grass FM) or low rate of formic acid (0.4 l t-1 FM). In experiment II, E76 and a commercial inoculant were applied alone and in combination with sodium benzoate. Untreated silage and formic acid (4 l t-1 FM) treated silage served as negative and positive controls in both experiments. The effect of sodium benzoate and potassium sorbate in experiment I, on aerobic stability was tested by treating silages prior to aerobic stability measurements. The novel lactic acid bacteria inoculant was equally effective in improving fermentation quality as the commercial inoculant. However, the aerobic stability of both inoculated silages was poorer than that of formic acid treated or the untreated one in one of the experiments. The results suggested that antimicrobial properties of E76 were not effective enough to improve aerobic instability. One option to overcome this problem is to use chemical additives in combination with the inoculants.;


Sign in / Sign up

Export Citation Format

Share Document