scholarly journals Effects of maturity stage and lactic acid bacteria on the fermentation quality and aerobic stability of Siberian wildrye silage

2016 ◽  
Vol 4 (5) ◽  
pp. 664-670 ◽  
Author(s):  
Ping Li ◽  
Shiqie Bai ◽  
Minghong You ◽  
Yixin Shen
2020 ◽  
Vol 19 (1) ◽  
pp. 744-752
Author(s):  
Xuxiong Tao ◽  
Sifan Chen ◽  
Jie Zhao ◽  
Siran Wang ◽  
Zhihao Dong ◽  
...  

2011 ◽  
Vol 347-353 ◽  
pp. 189-192
Author(s):  
Hui Li Wang ◽  
Qi Zhong Sun ◽  
Fu Yu Yang ◽  
Chun Cheng Xu

This experiment was conducted to evaluate the effect of ensiling on fermentation quality and aerobic stability of a total mixed ration (TMR) containing wet brewers’ grains and corn straw. During the ensiling period, pH fell dramatically from 6.00 to 3.92 at the initial 3 days, then it maintained relatively stable. Lactic acid concentration firstly increased rapidly then it became slowly to reach 3.21% at day 28 post-ensiling. No propionic acid or butyric acid was observed throughout the ensiling. When exposed to air, the temperature of TMR increased quickly to reach a maximum of about 45°C at the 6-day, then it tended to decline until day 9. Later, it had another relative low peak at the 10-day, then it dropped slowly to be equal to air temperature. For TMR silage, no heat production or mold were detected in the entire period. In addition, during the days of exposure, the pH for TMR varied from 6.0-8.7, while TMR silages had no significant differences (3.86 to 3.87). The number of lactic acid bacteria (LAB) for the TMR decreased from the initial 3.2×103cfu g-1to below detectable levels and yeast counts increased by 1000 times. However, the TMR silage had no significant change in LAB and yeast counts. These results indicated that the TMR silage showed great quality and aerobic stability. Overall, fermentation plays an important part in helping total mixed ration silage forming a good aerobic stability.


2021 ◽  
Vol 9 (1) ◽  
pp. 52-59
Author(s):  
Xuxiong Tao ◽  
Chongwen Ji ◽  
Sifan Chen ◽  
Jie Zhao ◽  
Siran Wang ◽  
...  

This study was conducted to investigate the effects of adding citric acid residue (CAR) with or without lactic acid bacteria (LAB) to Napier grass (Cenchrus purpureus; syn. Pennisetum purpureum) cv. Sumu No. 2 at ensiling on the fermentation quality and aerobic stability of the resulting silage. Treatments included: Control (Napier grass forage without additives); and Napier grass inoculated with lactic acid bacteria (Lactobacillus plantarum and L. buchneri) at 1 × 106 cfu/gfresh weight (FW) forage (LAB) or 36 g citric acid residue/kg FW forage (CAR) or a mixture of CAR and LAB (CL). Forty-five days after ensiling the silages were tested for chemical and microbial composition and an aerobic stability test was conducted. The addition of CAR with or without LAB increased the DM and lactic acid concentrations in silage and decreased pH plus acetic acid, ammonia nitrogen (NH3-N), neutral detergent fiber and cellulose concentrations relative to Control. The pH in LAB silage was lower than in Control, while lactic acid concentration was higher. During the first 2 days of aerobic exposure, all additives increased the water-soluble carbohydrate (WSC) and lactic acid concentrations and decreased pH plus NH3-N and acetic acid concentrations. Moreover, CL silages had the highest WSC and the lowest NH3-N and acetic acid concentrations during aerobic exposure. However, all additives failed to improve the aerobic stability of the silage. While CAR with or without LAB inoculant improved the fermentation quality of silage made from Napier grass, more studies are warranted to identify additives which can improve aerobic stability of the silage after opening.


2008 ◽  
Vol 15 (3) ◽  
pp. 185 ◽  
Author(s):  
E. SAARISALO ◽  
T. JALAVA ◽  
E. SKYTTÄ

The efficiency of a novel strain of lactic acid bacteria inoculant (Lactobacillus plantarum VTT E-78076, E76) on the fermentation quality of wilted silage was studied. Furthermore, the possibility to improve aerobic stability of silages by combining an inoculant and chemical preservatives was investigated. Two experiments were conducted with wilted timothy-meadow fescue herbage (dry matter 429 and 344 g kg-1) using six treatments. In experiment I, E76 (106 cfu g-1 fresh matter (FM)) was applied alone and in combination with sodium benzoate (0.3 g kg-1 grass FM) or low rate of formic acid (0.4 l t-1 FM). In experiment II, E76 and a commercial inoculant were applied alone and in combination with sodium benzoate. Untreated silage and formic acid (4 l t-1 FM) treated silage served as negative and positive controls in both experiments. The effect of sodium benzoate and potassium sorbate in experiment I, on aerobic stability was tested by treating silages prior to aerobic stability measurements. The novel lactic acid bacteria inoculant was equally effective in improving fermentation quality as the commercial inoculant. However, the aerobic stability of both inoculated silages was poorer than that of formic acid treated or the untreated one in one of the experiments. The results suggested that antimicrobial properties of E76 were not effective enough to improve aerobic instability. One option to overcome this problem is to use chemical additives in combination with the inoculants.;


2019 ◽  
Vol 90 (4) ◽  
pp. 513-522 ◽  
Author(s):  
Ying‐Chao Zhang ◽  
Dong‐Xia Li ◽  
Xue‐Kai Wang ◽  
Yan‐Li Lin ◽  
Qing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document