scholarly journals Effects of composition and pressure on electronic states of iron in bridgmanite

2020 ◽  
Vol 105 (7) ◽  
pp. 1030-1039 ◽  
Author(s):  
Susannah M. Dorfman ◽  
Vasily Potapkin ◽  
Mingda Lv ◽  
Eran Greenberg ◽  
Ilya Kupenko ◽  
...  

Abstract Electronic states of iron in the lower mantle's dominant mineral, (Mg,Fe,Al)(Fe,Al,Si)O3 bridgmanite, control physical properties of the mantle including density, elasticity, and electrical and thermal conductivity. However, the determination of electronic states of iron has been controversial, in part due to different interpretations of Mössbauer spectroscopy results used to identify spin state, valence state, and site occupancy of iron. We applied energy-domain Mössbauer spectroscopy to a set of four bridgmanite samples spanning a wide range of compositions: 10–50% Fe/total cations, 0–25% Al/total cations, 12–100% Fe3+/total Fe. Measurements performed in the diamond-anvil cell at pressures up to 76 GPa below and above the high to low spin transition in Fe3+ provide a Mössbauer reference library for bridgmanite and demonstrate the effects of pressure and composition on electronic states of iron. Results indicate that although the spin transition in Fe3+ in the bridgmanite B-site occurs as predicted, it does not strongly affect the observed quadrupole splitting of 1.4 mm/s, and only decreases center shift for this site to 0 mm/s at ~70 GPa. Thus center shift can easily distinguish Fe3+ from Fe2+ at high pressure, which exhibits two distinct Mössbauer sites with center shift ~1 mm/s and quadrupole splitting 2.4–3.1 and 3.9 mm/s at ~70 GPa. Correct quantification of Fe3+/total Fe in bridgmanite is required to constrain the effects of composition and redox states in experimental measurements of seismic properties of bridgmanite. In Fe-rich, mixed-valence bridgmanite at deep-mantle-relevant pressures, up to ~20% of the Fe may be a Fe2.5+ charge transfer component, which should enhance electrical and thermal conductivity in Fe-rich heterogeneities at the base of Earth's mantle.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joachim Landers ◽  
Soma Salamon ◽  
Samira Webers ◽  
Heiko Wende

Abstract Mössbauer spectroscopy is a well-known technique to study complex magnetic structures, due to its sensitivity to electronic and magnetic interactions of the probed nucleus with its electronic surrounding. It has also been applied to the emerging fields of magnetic hybrid materials as well as to ferrofluids, as information on the magnetic alignment and the velocity of the probed nucleus, i.e. of the particle it is embedded in, can be inferred from the spectra in addition to the above-mentioned quantities. Considering the wide range of preparation methods and sample properties, including fluids, particle powders, sintered pellets, polymer matrices and viscoelastic hydrogels, a considerable advantage of Mössbauer spectroscopy is the usage of γ-photons. This allows measurements on opaque samples, for which optical experiments are usually not feasible, also making the technique relatively independent of specific sample geometries or preparation. Using iron oxide nanoparticles in glycerol solution as an exemplary material here, the variety of system parameters simultaneously accessible via Mössbauer spectroscopy can be demonstrated: Spectra recorded for particles of different sizes provided information on the particles’ Brownian dynamics, including the effect of the shell thickness on their hydrodynamic diameter, the presence (or absence) and ballpark frequency of Néel superspin relaxation as well as the particles’ average magnetic orientation in external magnetic fields. For single-core particles, this resulted in the observation of standard Langevin-type alignment behavior. Mössbauer spectra additionally provide information on the absolute degree of spin alignment, also allowing the determination of the degree of surface spin canting, which limits the maximum magnetization of ferrofluid samples. Analyzing the alignment behavior of agglomerated particles for comparison, we found a completely different trend, in which spin alignment was further hindered by the competition of easy magnetic directions. More complex particle dynamics are observed when going from ferrofluids to hybrid materials, where the particle mobility and alignability depends not only on the particles’ shape and material, but also on the matrices’ inner structure and the acting force-transfer mechanism between particles and the surrounding medium. In ferrohydrogels for example, particle mobility in terms of Mössbauer spectroscopy was probed for different crosslinker concentrations, resulting in widely different mesh-sizes of the polymer network and different degrees of freedom. While a decrease in particle dynamics is clearly visible in Mössbauer spectroscopy upon rising crosslinker density, complementary AC-susceptometry experiments indicated no Brownian motion on the expected timescales. This apparent contradiction could, however, be explained by the different timescales of the experiments, probing either the relatively free Brownian motion on ultrashort timescales or the more bound state preventing extensive particle motion by interaction with the trapping mesh walls in the millisecond regime. However, it should also be considered that the effect of the surroundings on particle rotation in AC-susceptometry may also differ from the variation in translational motion, probed by Mössbauer spectroscopy. Being sensitive mainly to translational motion also results in a wide range of particles to be accessible for studies via Mössbauer spectroscopy, including larger agglomerates embedded in polymers, intended for remote-controlled heating. Despite the agglomerates’ wide distribution in effective diameters, information on particle motion was found to be in good agreement with AC-susceptometry experiments at ultralow frequencies in and above the polymer melting region, while additionally giving insight into Néel relaxation of the individual nanoparticles and their magnetic structure.


2021 ◽  
Author(s):  
Katarzyna Bednarska-Szczepaniak ◽  
Katarzyna Dziedzic-Kocurek ◽  
Ewelina Przelazły ◽  
Jan Stanek ◽  
Zbigniew Jan Lesnikowski

Mössbauer spectroscopy of iron(III)bis(dicarbollide) (1) and its adduct (2) revealed low spin FeIII in 1 and supprasingly FeII in 2. In 1 the (C2B9H11) rotate at room temperature with 107...


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 146
Author(s):  
Tyler Perez ◽  
Gregory J. Finkelstein ◽  
Olivia Pardo ◽  
Natalia V. Solomatova ◽  
Jennifer M. Jackson

Szomolnokite is a monohydrated ferrous iron sulfate mineral, FeSO4·H2O, where the ferrous iron atoms are in octahedral coordination with four corners shared with SO4 and two with H2O groups. While somewhat rare on Earth, szomolnokite has been detected on the surface of Mars along with several other hydrated sulfates and is suggested to occur near the surface of Venus. Previous measurements have characterized the local environment of the iron atoms in szomolnokite using Mössbauer spectroscopy at a range of temperatures and 1 bar. Our study represents a step towards understanding the electronic environment of iron in szomolnokite under compression at 300 K. Using a hydrostatic helium pressure-transmitting medium, we explored the pressure dependence of iron’s site-specific behavior in a synthetic szomolnokite powdered sample up to 95 GPa with time-domain synchrotron Mössbauer spectroscopy. At 1 bar, the Mössbauer spectrum is well described by two Fe2+-like sites and no ferric iron, consistent with select conventional Mössbauer spectra evaluations. At pressures below 19 GPa, steep gradients in the hyperfine parameters are most likely due to a structural phase transition. At 19 GPa, a fourth site is required to explain the time spectrum with increasing fractions of a low quadrupole splitting site, which could indicate the onset of another transition. Above 19 GPa we present three different models, including those with a high- to low-spin transition, that provide reasonable scenarios of electronic environment changes of the iron in szomolnokite with pressure. We summarize the complex range of Fe2+ spin transition characteristics at high-pressures by comparing szomolnokite with previous studies on ferrous-iron bearing phases.


2010 ◽  
pp. 301-307
Author(s):  
M. I. Oshtrakh ◽  
A. L. Berkovsky ◽  
A. Kumar ◽  
S. Kundu ◽  
A. V. Vinogradov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document