scholarly journals Paragenesis of Li minerals in the Nanyangshan rare-metal pegmatite, Northern China: Toward a generalized sequence of Li crystallization in Li–Cs–Ta-type granitic pegmatites

2022 ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 166-187
Author(s):  
Abiola Oyebamiji ◽  
Adeniyi JohnPaul Adewumi ◽  
Tehseen Zafar ◽  
Adegbola Odebunmi ◽  
Philips Falae ◽  
...  

Abstract This research reviews the geology, petrogenesis, compositional trends and geochronology of the rare-metal pegmatite of southwestern Nigeria. The source of these pegmatites is still presently debated which have been explained as either product of highly fractionated molten material or anatexis of the local crust. However, published works of past authors have been compiled to give a detailed understanding of the formation of the mineral deposits. The basement complex of southwestern Nigeria comprises of Precambrian rocks of amphibolite, the hornblende gneiss and the granite gneisses which were formed as a result of the opening and closing of the ensialic basin with significant, extensive subduction during the Pan-African orogeny. The pegmatites in this region have shown internal zoning and a high degree of evolution from the border zone to the core zone during the crystallization and solidification of the felsic granite to pegmatite melt. The rare-metal pegmatites have distinct chemical compositions and mineralogy, containing quartz, biotite, muscovite, microcline, garnet with localized tourmaline, tantalite and columbite. These pegmatites vary significantly by their bulk-rock and mineral chemistry which indicates a more peraluminous attribute and enrichments of lithophile elements of Rb, Cs, Ta and Ba. Previous K/Ar isotopic ages (502.8±13.0 Ma and 514.5±13.2 Ma) suggest that the pegmatites are related to the post-collisional phase of intensive metasomatism. Adopted from previous studies, a five-stage conceptual model of evolution which is widely accepted have been proposed for the origin of the pegmatites.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1017
Author(s):  
Sergey V. Khromykh ◽  
Tatiana A. Oitseva ◽  
Pavel D. Kotler ◽  
Boris A. D’yachkov ◽  
Sergey Z. Smirnov ◽  
...  

The paper presents new geological, mineralogical, and isotope geochronological data for rare-metal pegmatites in the Kalba granitic batholith (Eastern Kazakhstan). Mineralization is especially abundant in the Central-Kalba ore district, where pegmatite bodies occur at the top of large granite plutons and at intersections of deep faults. The pegmatites contain several successive mineral assemblages from barren quartz-microcline and quartz-microcline-albite to Li-Cs-Ta-Nb-Be-Sn-bearing cleavelandite-lepidolite-spodumene. Ar-Ar muscovite and lepidolite ages bracket the metallogenic event between 291 and 286 Ma. The pegmatite mineral deposits formed synchronously with the emplacement of the phase 1 Kalba granites during the evolution of hydrous silicate rare-metal magmas that are produced by the differentiation of granite magma at large sources with possible inputs of F and rare metals with fluids.


Author(s):  
L. Stepanyuk ◽  
O. Hrinchenko ◽  
B. Slobodian ◽  
V. Semka ◽  
S. Kurylo ◽  
...  

Rare-metal elements are strategic metals which, in general, are extremely important for economic development or maintenance of defence capability of any country at the modern level. The list of needs for these strategic metals ranges depending on the level of economic development of certain country, but in general it includes such elements as Li, Ta, Nb, Be, Sb, W, REE and others. The majority of these elements has the lithophilous nature and, therefore, is characterized by close genetic relations with granites and pegmatites associated with them. In the world, industrial production of lithium is shared between deposits to lithium-bearing brine of saline depositions of marine basins (Argentina, Chile), some granites (China) and rare-metal pegmatites (Australia, China, Zimmbabve). In pegmatites lithium mineralization is represented mainly by spodumene (LiAlSi2O6), But other lithium-containing metallic minerals can also play an important role in production of this metal – petalite (LiAlSi4O10), minerals of lepidolite (Sa [Li,Al]3[Si,Al]4O10[F,OH]2) and amblygonite-montebrasite (LiAlPO4 [F,OH]) series. Rare-metal pegmatite of Ingul megablock of Ukrainian Shield can be treated as unique (insufficiently studied in world practice) pegmatitic formations in which the main metallic mineral is represented by petalite. In metallogenic interpretations two ore districts can be distinguished within the megablok, that are specialized on rare metals (Li, Rb, Cs, Be, Ta, Nb, Sn) – Polohivka and Stankuvatka. Deposits and numerous ore manifestations of rare metals formed in rather similar geological and tectonic conditions and have many common features – both country rocks composition and mineralogic composition of ores. Within Ingul megablock (Shpola-Tashlyk rare-metal district) a number of lithium rare-metal deposits associated with pegmatites is discovered. In order to determine the age of lithium mineralization in granites of Lypniazhka, Taburyshche massifs and vein bodies of pegmatitic and aplito-pegmatitic granites, which are selected from different localities of this megablock, are dated by U-Pd isotopic method by monazites. It is established that emplacement of vein granites of Ingul megablock occurred within rather narrow age interval – 2040-2020 Ma and it is not significantly separated in time from formation of most granitoids they are spatially associated with. This fact, together with geological evidences, gives grounds to make the assumption that rare-metal lithium pegmatite are formed in the same age interval.


2003 ◽  
Vol 38 (2) ◽  
pp. 251-257 ◽  
Author(s):  
Jingwen Mao ◽  
Andao Du ◽  
Reimar Seltmann ◽  
Jinjie Yu

2011 ◽  
Vol 53 (8) ◽  
pp. 806-817 ◽  
Author(s):  
L. G. Kuznetsova ◽  
A. A. Zolotarev ◽  
O. V. Frank-Kamenetskaya ◽  
I. V. Rozhdestvenskaya ◽  
Yu. M. Bronzova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document