Anatectic Granitic Pegmatites from the Eastern Alps: A Case of Variable Rare-Metal Enrichment During High-Grade Regional Metamorphism – I: Mineral Assemblages, Geochemical Characteristics, and Emplacement Ages

2018 ◽  
Vol 56 (4) ◽  
pp. 555-602 ◽  
Author(s):  
Jürgen Konzett ◽  
Tobias Schneider ◽  
Latina Nedyalkova ◽  
Christoph Hauzenberger ◽  
Frank Melcher ◽  
...  
1985 ◽  
Vol 49 (354) ◽  
pp. 649-654 ◽  
Author(s):  
N. S. Angus ◽  
R. Middleton

AbstractHögbomite occurs in two contrasting mineral assemblages within the Currywongaun-Dough-ruagh intrusion of north Connemara: a cordierite-rich pelitic xenolith and an orthopyroxenite. In the latter, högbomite and green spinel form blebs within magnetite-ilmenite grains. The högbomite displays significant compositional variation from grain to grain: TiO2 (3.0–6.3%), FeO (21.6–21.3%), MgO (10.0–7.5%), ZnO (3.6–2.4%). This chemical heterogeneity appears to represent variable degrees of partial substitution of Mg and Zn by Ti, in the replacement of spinel by högbomite. By contrast, in the cordierite-hornfels, the högbomite compositions are more notably enriched in iron: TiO2 (4.7–7.0%), FeO (29.6–24.3%), MgO (4.2–6.2%), ZnO (2.7–2.1%). This iron-rich högbomite appears to have formed primarily by interaction between opaque ore and adjacent cordierite, rather than by replacement of spinel.Two high-grade metamorphic episodes appear to be necessary for högbomite growth, one determining chemical composition and the other appropriate physical parameters. In the Connemara occurrences thermal metamorphism and partial melting, coupled with contamination of the surrounding magma, controlled the formation of mineral assemblages rich in Fe, Mg, Al, Ti, and Zn. Emplacement of the intrusion was accompanied by amphibolite facies regional metamorphism and it is to this metamorphic event that the growth of högbomite may be attributed.


2021 ◽  
pp. 104283
Author(s):  
Felipe Holanda dos Santos ◽  
Wagner da Silva Amaral ◽  
Kurt Konhauser ◽  
Douglas Teixeira Martins ◽  
Marco Paulo de Castro ◽  
...  

2007 ◽  
Vol 43 (3) ◽  
pp. 363-371 ◽  
Author(s):  
Peter Neumayr ◽  
John Walshe ◽  
Steffen Hagemann ◽  
Klaus Petersen ◽  
Anthony Roache ◽  
...  

2014 ◽  
Vol 60 ◽  
pp. 112-125 ◽  
Author(s):  
Xiao-Hui Sun ◽  
Xiao-Qing Zhu ◽  
Hao-Shu Tang ◽  
Qian Zhang ◽  
Tai-Yi Luo

1976 ◽  
Vol 13 (3) ◽  
pp. 405-421 ◽  
Author(s):  
Lee C. Pigage

Pelitic metasediments immediately southwest of Yale, British Columbia contain mineral assemblages characteristic of staurolite through sillimanite zones of the Barrovian facies series. Microprobe analyses of major constituent phases in the pelites are combined with linear regression techniques to formulate probable kyanite- and sillimanite-forming reactions.A zone some 3 km wide contains the assemblage staurolite–kyanite–garnet–biotite–muscovite–quartz–plagioclase-ilmenite-rutile, which is univariant in AFM projection. Within precision limits of microprobe analysis, this assemblage is also univariant using linear regression techniques. Univariant relations are possible if [Formula: see text] with the composition of the fluid phase being buffered by the progressing reaction. This assemblage emphasizes the need for precise analyses when using the regression method, since minor components are often within permissible error limits rather than being balanced.Pelitic and calc-silicate assemblages from the metasediments restrict estimates of pressure–temperature conditions during regional metamorphism to 6–8 kbar and 550–770 °C. Pseudomorphs after andalusite indicate that contact metamorphism preceded regional upgrading of the pelites.


1976 ◽  
Vol 13 (6) ◽  
pp. 737-748 ◽  
Author(s):  
Manfred M. Kehlenbeck

In the de Courcey – Smiley Lakes Area, the boundary between the Quetico and Wabigoon Belts is expressed by a sequence of pelitic to semi-pelitic schists and gneisses. At the present level of erosion, these metasedimentary rocks are in contact with granodioritic gneisses, granites, and pegmatites, which are exposed to the south.To the north of this area, regional metamorphism of volcanic and sedimentary rocks has resulted in greenschist facies assemblages, which characterize the Wabigoon Belt in general. In the boundary zone, the metamorphic grade increases southward toward de Courcey and Smiley Lakes.Formation of three distinct foliation surfaces was accompanied by syn-tectonic as well as post-tectonic recrystallization, producing polymetamorphic schists.In the boundary zone, mineral assemblages comprising andalusile, sillimanite, cordierite, garnet. biotite, and muscovite form a facies series of the Abukuma type.The boundary between the Quetico and Wabigoon Belts in this area is a complex zone in which rocks of both belts have been reconstituted by multiple-phase metamorphism and partial melting.


1933 ◽  
Vol 57 (2) ◽  
pp. 557-592 ◽  
Author(s):  
Arthur G. Hutchison

The limestone to be described occurs in two separate areas (fig. 1)—one in Lower Deeside around Banchory, another in Middle Deeside around Aboyne. The whole of the Banchory and a large part of the Aboyne outcrops provide limestone types in a high grade of regional metamorphism (the associated schists contain sillimanite). In the latter outcrop the limestone has undergone thermal metamorphism at the contacts with Newer Granite intrusions. Many of the resulting hornfelses have suffered hydrothermal alterations with development of prehnite and zeolites. Newer Granite pegmatites, intruded at the time of hornfelsing, share in this hornfelsing and later hydrothermal modifications. In addition, they exercise exopneumatolytic and exohydrothermal metamorphism. Quite local metamorphisms take place at hornblende-schist and Older Granite contacts.


Sign in / Sign up

Export Citation Format

Share Document