Muth’s Rational Expectations Hypothesis, That “…The Subjective Probability Distributions Are Distributed Around an Objective Probability Distribution, for a given Information Set…” is an Oxymoron. It Can Be Corrected by Amending It to Read “…The Subjective Probability Distributions Are Distributed Around a Subjective Consensus Probability Distribution, for a given Information Set…”

2019 ◽  
Author(s):  
Michael Emmett Brady

2006 ◽  
Vol 10 (3) ◽  
pp. 415-425 ◽  
Author(s):  
P.A.V.B. SWAMY ◽  
GEORGE S. TAVLAS

Under certain interpretations of its coefficients, a specified econometric model is an exact representation of the “true” model, defining the “objective” probability distribution. This note enumerates these interpretations. In the absence of the conditions implied by these interpretations, the econometric model is misspecified. The note shows that model misspecifications prevent the satisfaction of a necessary and sufficient condition for individual expectations to be rational in Muth's sense. Whereas restrictive forms of econometric models can give very inaccurate predictions, this note describes the conditions under which the predictions generated from time-varying coefficient models coincide with the predictions generated from the relevant economic theory.



1992 ◽  
Vol 24 (2) ◽  
pp. 23-32 ◽  
Author(s):  
James W. Pease

AbstractForecast distributions based on historical yields and subjective expectations for 1987 expected crop yields were compared for 90 Western Kentucky grain farms. Different subjective probability elicitation techniques were also compared. In many individual cases, results indicate large differences between subjective and empirical moments. Overall, farmer expectations for 1987 corn yields were below those predicted from their past yields, while soybean expectations were above the historical forecast. Geographical location plays a larger role than crop in comparisons of relative variability of yield. Neither elicitation technique nor manager characteristics have significant effects on the comparisons of the forecasts.



2011 ◽  
Vol 09 (supp01) ◽  
pp. 39-47
Author(s):  
ALESSIA ALLEVI ◽  
MARIA BONDANI ◽  
ALESSANDRA ANDREONI

We present the experimental reconstruction of the Wigner function of some optical states. The method is based on direct intensity measurements by non-ideal photodetectors operated in the linear regime. The signal state is mixed at a beam-splitter with a set of coherent probes of known complex amplitudes and the probability distribution of the detected photons is measured. The Wigner function is given by a suitable sum of these probability distributions measured for different values of the probe. For comparison, the same data are analyzed to obtain the number distributions and the Wigner functions for photons.



2021 ◽  
Vol 5 (1) ◽  
pp. 1-11
Author(s):  
Vitthal Anwat ◽  
Pramodkumar Hire ◽  
Uttam Pawar ◽  
Rajendra Gunjal

Flood Frequency Analysis (FFA) method was introduced by Fuller in 1914 to understand the magnitude and frequency of floods. The present study is carried out using the two most widely accepted probability distributions for FFA in the world namely, Gumbel Extreme Value type I (GEVI) and Log Pearson type III (LP-III). The Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) methods were used to select the most suitable probability distribution at sites in the Damanganga Basin. Moreover, discharges were estimated for various return periods using GEVI and LP-III. The recurrence interval of the largest peak flood on record (Qmax) is 107 years (at Nanipalsan) and 146 years (at Ozarkhed) as per LP-III. Flood Frequency Curves (FFC) specifies that LP-III is the best-fitted probability distribution for FFA of the Damanganga Basin. Therefore, estimated discharges and return periods by LP-III probability distribution are more reliable and can be used for designing hydraulic structures.



Author(s):  
J. L. Cagney ◽  
S. S. Rao

Abstract The modeling of manufacturing errors in mechanisms is a significant task to validate practical designs. The use of probability distributions for errors can simulate manufacturing variations and real world operations. This paper presents the mechanical error analysis of universal joint drivelines. Each error is simulated using a probability distribution, i.e., a design of the mechanism is created by assigning random values to the errors. Each design is then evaluated by comparing the output error with a limiting value and the reliability of the universal joint is estimated. For this, the design is considered a failure whenever the output error exceeds the specified limit. In addition, the problem of synthesis, which involves the allocation of tolerances (errors) for minimum manufacturing cost without violating a specified accuracy requirement of the output, is also considered. Three probability distributions — normal, Weibull and beta distributions — were used to simulate the random values of the errors. The similarity of the results given by the three distributions suggests that the use of normal distribution would be acceptable for modeling the tolerances in most cases.



2021 ◽  
Vol 118 (40) ◽  
pp. e2025782118
Author(s):  
Wei-Chia Chen ◽  
Juannan Zhou ◽  
Jason M. Sheltzer ◽  
Justin B. Kinney ◽  
David M. McCandlish

Density estimation in sequence space is a fundamental problem in machine learning that is also of great importance in computational biology. Due to the discrete nature and large dimensionality of sequence space, how best to estimate such probability distributions from a sample of observed sequences remains unclear. One common strategy for addressing this problem is to estimate the probability distribution using maximum entropy (i.e., calculating point estimates for some set of correlations based on the observed sequences and predicting the probability distribution that is as uniform as possible while still matching these point estimates). Building on recent advances in Bayesian field-theoretic density estimation, we present a generalization of this maximum entropy approach that provides greater expressivity in regions of sequence space where data are plentiful while still maintaining a conservative maximum entropy character in regions of sequence space where data are sparse or absent. In particular, we define a family of priors for probability distributions over sequence space with a single hyperparameter that controls the expected magnitude of higher-order correlations. This family of priors then results in a corresponding one-dimensional family of maximum a posteriori estimates that interpolate smoothly between the maximum entropy estimate and the observed sample frequencies. To demonstrate the power of this method, we use it to explore the high-dimensional geometry of the distribution of 5′ splice sites found in the human genome and to understand patterns of chromosomal abnormalities across human cancers.



2016 ◽  
Vol 11 (1) ◽  
pp. 432-440 ◽  
Author(s):  
M. T. Amin ◽  
M. Rizwan ◽  
A. A. Alazba

AbstractThis study was designed to find the best-fit probability distribution of annual maximum rainfall based on a twenty-four-hour sample in the northern regions of Pakistan using four probability distributions: normal, log-normal, log-Pearson type-III and Gumbel max. Based on the scores of goodness of fit tests, the normal distribution was found to be the best-fit probability distribution at the Mardan rainfall gauging station. The log-Pearson type-III distribution was found to be the best-fit probability distribution at the rest of the rainfall gauging stations. The maximum values of expected rainfall were calculated using the best-fit probability distributions and can be used by design engineers in future research.





Sign in / Sign up

Export Citation Format

Share Document