Vascular Endothelial Growth Factor B Promotes Transendothelial Fatty Acid Transport into Skeletal Muscle via Histone Methylation and Acetylation During Catch-Up Growth

2020 ◽  
Author(s):  
Xiaodan Lu ◽  
Shengqing Hu ◽  
Yunfei Liao ◽  
Juan Zheng ◽  
Tianshu Zeng ◽  
...  
2020 ◽  
Vol 319 (6) ◽  
pp. E1031-E1043
Author(s):  
Xiaodan Lu ◽  
Shengqing Hu ◽  
Yunfei Liao ◽  
Juan Zheng ◽  
Tianshu Zeng ◽  
...  

Caloric restriction (CR) followed by refeeding, a phenomenon known as catch-up growth (CUG), results in excessive lipid deposition and insulin resistance in skeletal muscle, but the underlying mechanisms remain elusive. Recent reports have suggested that vascular endothelial growth factor B (VEGF-B) controls muscle lipid accumulation by regulating endothelial fatty acid transport. Here, we found continuous activation of VEGF-B signaling and increased lipid uptake in skeletal muscle from CR to refeeding, as well as increased lipid deposition and impaired insulin sensitivity after refeeding in the skeletal muscle of CUG rodents. Inhibiting VEGF-B signaling reduced fatty acid uptake in and transport across endothelial cells. Knockdown of Vegfb in the tibialis anterior (TA) muscle of CUG mice significantly attenuated muscle lipid accumulation and ameliorated muscle insulin sensitivity by decreasing lipid uptake. Furthermore, we showed that aberrant histone methylation (H3K9me1) and acetylation (H3K14ac and H3K18ac) at the Vegfb promoter might be the main cause of persistent VEGF-B upregulation in skeletal muscle during CUG. Modifying these aberrant loci using their related enzymes [PHD finger protein 2 (PHF2) or E1A binding protein p300 (p300)] could regulate VEGF-B expression in vitro. Collectively, our findings indicate that VEGF-B can promote transendothelial lipid transport and lead to lipid overaccumulation and insulin resistance in skeletal muscle during CUG, which might be mediated by histone methylation and acetylation.


Physiology ◽  
2013 ◽  
Vol 28 (2) ◽  
pp. 125-134 ◽  
Author(s):  
Carolina Hagberg ◽  
Annika Mehlem ◽  
Annelie Falkevall ◽  
Lars Muhl ◽  
Ulf Eriksson

Dietary lipids present in the circulation have to be transported through the vascular endothelium to be utilized by tissue cells, a vital mechanism that is still poorly understood. Vascular endothelial growth factor B (VEGF-B) regulates this process by controlling the expression of endothelial fatty acid transporter proteins (FATPs). Here, we summarize research on the role of the vascular endothelium in nutrient transport, with emphasis on VEGF-B signaling.


2010 ◽  
Vol 299 (4) ◽  
pp. R1059-R1067 ◽  
Author(s):  
I. Mark Olfert ◽  
Richard A. Howlett ◽  
Peter D. Wagner ◽  
Ellen C. Breen

We have previously shown, using a Cre-LoxP strategy, that vascular endothelial growth factor (VEGF) is required for the development and maintenance of skeletal muscle capillarity in sedentary adult mice. To determine whether VEGF expression is required for skeletal muscle capillary adaptation to exercise training, gastrocnemius muscle capillarity was measured in myocyte-specific VEGF gene-deleted (mVEGF−/−) and wild-type (WT) littermate mice following 6 wk of treadmill running (1 h/day, 5 days/wk) at the same running speed. The effect of training on metabolic enzyme activity levels and whole body running performance was also evaluated in mVEGF−/− and WT mice. Posttraining capillary density was significantly increased by 59% ( P < 0.05) in the deep muscle region of the gastrocnemius in WT mice but did not change in mVEGF−/− mice. Maximal running speed and time to exhaustion during submaximal running increased by 20 and 13% ( P < 0.05), respectively, in WT mice after training but were unchanged in mVEGF−/− mice. Training led to increases in skeletal muscle citrate synthase (CS) and phosphofructokinase (PFK) activities in both WT and mVEGF−/− mice ( P < 0.05), whereas β-hydroxyacyl-CoA dehydrogenase (β-HAD) activity was increased only in WT mice. These data demonstrate that skeletal muscle capillary adaptation to physical training does not occur in the absence of myocyte-expressed VEGF. However, skeletal muscle metabolic adaptation to exercise training takes place independent of myocyte VEGF expression.


Sign in / Sign up

Export Citation Format

Share Document