Immunosuppressive Functions of M2 Macrophages Derived from iPSCs of ALS Patients

2020 ◽  
Author(s):  
Weihua Zhao ◽  
David R. Beers ◽  
Jason R. Thonhoff ◽  
Aaron D. Thome ◽  
Alireza Faridar ◽  
...  
Keyword(s):  
2004 ◽  
Author(s):  
Steven E. Mock ◽  
Elaine Wethington ◽  
Ishtar Gabriel ◽  
John Turnbull
Keyword(s):  

2014 ◽  
Vol 226 (02) ◽  
Author(s):  
M Barros ◽  
P Segges ◽  
G Vera-Lozada ◽  
R Hassan ◽  
G Niedobitek

2015 ◽  
Vol 10 (S 01) ◽  
Author(s):  
K Moganti ◽  
F Li ◽  
S Riehman ◽  
H Klüter ◽  
M Harmsen ◽  
...  

2007 ◽  
Vol 34 (S 2) ◽  
Author(s):  
R Jox ◽  
S Haarmann-Doetkotte ◽  
M Wasner ◽  
GD Borasio

2020 ◽  
Vol 12 (45) ◽  
pp. 63-66
Author(s):  
Halim Nagem Filho ◽  
Reinaldo Francisco Maia ◽  
Reinaldo Missaka ◽  
Nasser Hussein Fares

The osseointegration is the stable and functional union between the bone and a titanium surface. A new bone can be found on the surface of the implant about 1 week after its installation; the bone remodeling begins between 6 and 12 weeks and continues throughout life. After the implant insertion, depending on the energy of the surface, the plasma fluid immediately adheres, in close contact with the surface, promoting the adsorption of proteins and inducing the indirect interaction of the cells with the material. Macrophages are cells found in the tissues and originated from bone marrow monocytes. The M1 macrophages orchestrate the phagocytic phase in the inflammatory region and also produce inflammatory cytokines involved with the chronic inflammation and the cleaning of the wound and damaged tissues from bacteria. On the other hand, alternative-activated macrophages (M2) are activated by IL-10, the immune complex. Its main function consists on regulating negatively the inflammation through the secretion of the immunosuppressant IL-10. The M2 macrophages present involvement with the immunosuppression, besides having a low capacity for presenting antigens and high production of cytokines; these can be further divided into M2a, M2b, and M2c, based on the gene expression profile.


2019 ◽  
Author(s):  
Xintong Hu ◽  
Yue Gu ◽  
Songchen Zhao ◽  
Shucheng Hua ◽  
Yanfang Jiang

2020 ◽  
Vol 17 (3) ◽  
pp. 275-285 ◽  
Author(s):  
Si Chen ◽  
Qiao Liao ◽  
Ke Lu ◽  
Jinxia Zhou ◽  
Cao Huang ◽  
...  

Background: Amyotrophic lateral sclerosis (ALS) is a neurological disorder clinically characterized by motor system dysfunction, with intraneuronal accumulation of the TAR DNAbinding protein 43 (TDP-43) being a pathological hallmark. Riluzole is a primarily prescribed medicine for ALS patients, while its therapeutical efficacy appears limited. TDP-43 transgenic mice are existing animal models for mechanistic/translational research into ALS. Methods: We developed a transgenic rat model of ALS expressing a mutant human TDP-43 transgene (TDP-43M337V) and evaluated the therapeutic effect of Riluzole on this model. Relative to control, rats with TDP-43M337V expression promoted by the neurofilament heavy subunit (NEF) gene or specifically in motor neurons promoted by the choline acetyltransferase (ChAT) gene showed progressive worsening of mobility and grip strength, along with loss of motor neurons, microglial activation, and intraneuronal accumulation of TDP-43 and ubiquitin aggregations in the spinal cord. Results: Compared to vehicle control, intragastric administration of Riluzole (30 mg/kg/d) did not mitigate the behavioral deficits nor alter the neuropathologies in the transgenics. Conclusion: These findings indicate that transgenic rats recapitulate the basic neurological and neuropathological characteristics of human ALS, while Riluzole treatment can not halt the development of the behavioral and histopathological phenotypes in this new transgenic rodent model of ALS.


2021 ◽  
Vol 22 (15) ◽  
pp. 8042
Author(s):  
Mengmeng Jin ◽  
Katja Akgün ◽  
Tjalf Ziemssen ◽  
Markus Kipp ◽  
Rene Günther ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a progressive disease leading to the degeneration of motor neurons (MNs). Neuroinflammation is involved in the pathogenesis of ALS; however, interactions of specific immune cell types and MNs are not well studied. We recently found a shift toward T helper (Th)1/Th17 cell-mediated, pro-inflammatory immune responses in the peripheral immune system of ALS patients, which positively correlated with disease severity and progression. Whether Th17 cells or their central mediator, Interleukin-17 (IL-17), directly affects human motor neuron survival is currently unknown. Here, we evaluated the contribution of Th17 cells and IL-17 on MN degeneration using the co-culture of iPSC-derived MNs of fused in sarcoma (FUS)-ALS patients and isogenic controls with Th17 lymphocytes derived from ALS patients, healthy controls, and multiple sclerosis (MS) patients (positive control). Only Th17 cells from MS patients induced severe MN degeneration in FUS-ALS as well as in wildtype MNs. Their main effector, IL-17A, yielded in a dose-dependent decline of the viability and neurite length of MNs. Surprisingly, IL-17F did not influence MNs. Importantly, neutralizing IL-17A and anti-IL-17 receptor A treatment reverted all effects of IL-17A. Our results offer compelling evidence that Th17 cells and IL-17A do directly contribute to MN degeneration.


Sign in / Sign up

Export Citation Format

Share Document