Machine Learning Approach for Predicting Breast Cancer Using Genomic Data

2020 ◽  
Author(s):  
Saurabh Sharma ◽  
Neel Shah ◽  
Rishiraj Singh ◽  
Reena Lokare
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pratyusha Rakshit ◽  
Onintze Zaballa ◽  
Aritz Pérez ◽  
Elisa Gómez-Inhiesto ◽  
Maria T. Acaiturri-Ayesta ◽  
...  

AbstractThis paper presents a novel machine learning approach to perform an early prediction of the healthcare cost of breast cancer patients. The learning phase of our prediction method considers the following two steps: (1) in the first step, the patients are clustered taking into account the sequences of actions undergoing similar clinical activities and ensuring similar healthcare costs, and (2) a Markov chain is then learned for each group to describe the action-sequences of the patients in the cluster. A two step procedure is undertaken in the prediction phase: (1) first, the healthcare cost of a new patient’s treatment is estimated based on the average healthcare cost of its k-nearest neighbors in each group, and (2) finally, an aggregate measure of the healthcare cost estimated by each group is used as the final predicted cost. Experiments undertaken reveal a mean absolute percentage error as small as 6%, even when half of the clinical records of a patient is available, substantiating the early prediction capability of the proposed method. Comparative analysis substantiates the superiority of the proposed algorithm over the state-of-the-art techniques.


Cancers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 431 ◽  
Author(s):  
Oneeb Rehman ◽  
Hanqi Zhuang ◽  
Ali Muhamed Ali ◽  
Ali Ibrahim ◽  
Zhongwei Li

Certain small noncoding microRNAs (miRNAs) are differentially expressed in normal tissues and cancers, which makes them great candidates for biomarkers for cancer. Previously, a selected subset of miRNAs has been experimentally verified to be linked to breast cancer. In this paper, we validated the importance of these miRNAs using a machine learning approach on miRNA expression data. We performed feature selection, using Information Gain (IG), Chi-Squared (CHI2) and Least Absolute Shrinkage and Selection Operation (LASSO), on the set of these relevant miRNAs to rank them by importance. We then performed cancer classification using these miRNAs as features using Random Forest (RF) and Support Vector Machine (SVM) classifiers. Our results demonstrated that the miRNAs ranked higher by our analysis had higher classifier performance. Performance becomes lower as the rank of the miRNA decreases, confirming that these miRNAs had different degrees of importance as biomarkers. Furthermore, we discovered that using a minimum of three miRNAs as biomarkers for breast cancers can be as effective as using the entire set of 1800 miRNAs. This work suggests that machine learning is a useful tool for functional studies of miRNAs for cancer detection and diagnosis.


2018 ◽  
Vol 63 (3) ◽  
pp. 035020 ◽  
Author(s):  
Morteza Heidari ◽  
Abolfazl Zargari Khuzani ◽  
Alan B Hollingsworth ◽  
Gopichandh Danala ◽  
Seyedehnafiseh Mirniaharikandehei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document