FACTS Device Control Strategy Using Optimal Number of PMU

2020 ◽  
Author(s):  
Hemant Kumar ◽  
Ratna Dahiya

2013 ◽  
Vol 221 (3) ◽  
pp. 145-159 ◽  
Author(s):  
Gerard J. P. van Breukelen

This paper introduces optimal design of randomized experiments where individuals are nested within organizations, such as schools, health centers, or companies. The focus is on nested designs with two levels (organization, individual) and two treatment conditions (treated, control), with treatment assignment to organizations, or to individuals within organizations. For each type of assignment, a multilevel model is first presented for the analysis of a quantitative dependent variable or outcome. Simple equations are then given for the optimal sample size per level (number of organizations, number of individuals) as a function of the sampling cost and outcome variance at each level, with realistic examples. Next, it is explained how the equations can be applied if the dependent variable is dichotomous, or if there are covariates in the model, or if the effects of two treatment factors are studied in a factorial nested design, or if the dependent variable is repeatedly measured. Designs with three levels of nesting and the optimal number of repeated measures are briefly discussed, and the paper ends with a short discussion of robust design.



1980 ◽  
Author(s):  
Harold F. Engler ◽  
Esther L. Davenport ◽  
Joanne Green ◽  
William E. Sears








ICTE 2015 ◽  
2015 ◽  
Author(s):  
Ming Jian ◽  
Yuanyuan Li ◽  
Rajapov Azamat


TAPPI Journal ◽  
2018 ◽  
Vol 17 (05) ◽  
pp. 295-305
Author(s):  
Wesley Gilbert ◽  
Ivan Trush ◽  
Bruce Allison ◽  
Randy Reimer ◽  
Howard Mason

Normal practice in continuous digester operation is to set the production rate through the chip meter speed. This speed is seldom, if ever, adjusted except to change production, and most of the other digester inputs are ratioed to it. The inherent assumption is that constant chip meter speed equates to constant dry mass flow of chips. This is seldom, if ever, true. As a result, the actual production rate, effective alkali (EA)-to-wood and liquor-to-wood ratios may vary substantially from assumed values. This increases process variability and decreases profits. In this report, a new continuous digester production rate control strategy is developed that addresses this shortcoming. A new noncontacting near infrared–based chip moisture sensor is combined with the existing weightometer signal to estimate the actual dry chip mass feedrate entering the digester. The estimated feedrate is then used to implement a novel feedback control strategy that adjusts the chip meter speed to maintain the dry chip feedrate at the target value. The report details the results of applying the new measurements and control strategy to a dual vessel continuous digester.



Sign in / Sign up

Export Citation Format

Share Document