Martensitic Transformation Induced by Electro-Chemical Polishing in Metastable Austenitic Stainless Steel

2020 ◽  
Author(s):  
Hojun Gwon ◽  
Dong Hwi Kim ◽  
Dongchul Chae ◽  
Sung-Joon Kim
2014 ◽  
Vol 788 ◽  
pp. 323-328 ◽  
Author(s):  
Ren Bo Song ◽  
Yu Pei ◽  
Yi Su Jia ◽  
Zhe Gao ◽  
Yang Xu ◽  
...  

Two different components of Φ5.5mm 304HC stainless steel wires were drawn at room temperature. After the drawing tests, hard wires of Φ4.5mm, Φ3.8mm and Φ3.45mm were obtained. During the process of drawing, the stacking fault energy of the metastable austenitic stainless steel was low, which have caused strain-induced martensitic transformation. By XRD, TEM, martensitic volume fraction measurement, etc., the results show that the strain-induced martensitic transformations of the two different components were different significantly. When the deformation amount was controlled at 33% or less, a small amount of γ → α ' martensitic transformations of two steels has occurred. While the deformation arrived at 52% or more, a large amount of γ → α ' martensitic transformation has occurred. The stainless steel which has a higher Cu content will have a lower martensite content, which results from the reason that Cu has a strong inhibitory effect on the martensitic formation. In addition, the martensitic transformation can also influence properties. With the accumulation of strain, deformation mainly occurs in martensitic structure, which reduces the plasticity.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Jinyang Zheng ◽  
Qunjie Lu ◽  
Yingzhe Wu ◽  
Xiao Zhang ◽  
Huiming Ding ◽  
...  

The formation of strain-induced martensite (SIM) is found in metastable austenitic stainless steel (m-ASS) during cold forming, and the presence of SIM may cause reductions in toughness, ductility, and corrosion resistance of m-ASS. These mechanical properties can be restored and improved by proper heat treatment after forming, however, which obviously raises the manufacturing costs. One low-cost way to reduce the SIM amount during m-ASS forming is to maintain the forming temperature at an appropriate level. This paper intends to investigate an approach to determine the optimum forming temperature at which the strain-induced martensitic transformation (SIM-Tr) of m-ASS head during forming can be restrained within a limited intensity. First, static tensile tests were conducted on S30408 conventional cylindrical tensile specimens under different temperatures varying from 20 °C to 180 °C, and then the effect of deformation temperature on SIM was evaluated. Second, according to the stacking fault energy (SFE) calculation method, m-ASS's chemical composition was taken into further consideration to investigate its effect on SIM. Finally, a formula was established based on SIM and chemical composition for optimization of forming temperature. In addition, the results obtained by this formula were compared with those of the experiment by S30408 ASS head stamping tests, and the satisfactory matching is found for the proposed forming temperatures and predicted ferrite number (FN) values (readings of the Ferritescope measurement, as a representation of the amount of martensite in this study). Furthermore, an enhancement in the cryogenic impact properties and a fewer quantity of delta-ferrite in the microstructure of m-ASS heads are observed when warm stamping is performed as compared with the cold stamped head.


Sign in / Sign up

Export Citation Format

Share Document