Clustering Commodity Markets in Space and Time: Clarifying Returns, Volatility, and Trading Regimes Through Unsupervised Machine Learning

2021 ◽  
Author(s):  
James Ming Chen ◽  
Mobeen Rehman
Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6099
Author(s):  
James Ming Chen ◽  
Mobeen Ur Rehman

The identification of critical periods and business cycles contributes significantly to the analysis of financial markets and the macroeconomy. Financialization and cointegration place a premium on the accurate recognition of time-varying volatility in commodity markets, especially those for crude oil and refined fuels. This article seeks to identify critical periods in the trading of energy-related commodities as a step toward understanding the temporal dynamics of those markets. This article proposes a novel application of unsupervised machine learning. A suite of clustering methods, applied to conditional volatility forecasts by trading days and individual assets or asset classes, can identify critical periods in energy-related commodity markets. Unsupervised machine learning achieves this task without rules-based or subjective definitions of crises. Five clustering methods—affinity propagation, mean-shift, spectral, k-means, and hierarchical agglomerative clustering—can identify anomalous periods in commodities trading. These methods identified the financial crisis of 2008–2009 and the initial stages of the COVID-19 pandemic. Applied to four energy-related markets—Brent, West Texas intermediate, gasoil, and gasoline—the same methods identified additional periods connected to events such as the September 11 terrorist attacks and the 2003 Persian Gulf war. t-distributed stochastic neighbor embedding facilitates the visualization of trading regimes. Temporal clustering of conditional volatility forecasts reveals unusual financial properties that distinguish the trading of energy-related commodities during critical periods from trading during normal periods and from trade in other commodities in all periods. Whereas critical periods for all commodities appear to coincide with broader disruptions in demand for energy, critical periods unique to crude oil and refined fuels appear to arise from acute disruptions in supply. Extensions of these methods include the definition of bull and bear markets and the identification of recessions and recoveries in the real economy.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2020 ◽  
Author(s):  
Jiawei Peng ◽  
Yu Xie ◽  
Deping Hu ◽  
Zhenggang Lan

The system-plus-bath model is an important tool to understand nonadiabatic dynamics for large molecular systems. The understanding of the collective motion of a huge number of bath modes is essential to reveal their key roles in the overall dynamics. We apply the principal component analysis (PCA) to investigate the bath motion based on the massive data generated from the MM-SQC (symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian) nonadiabatic dynamics of the excited-state energy transfer dynamics of Frenkel-exciton model. The PCA method clearly clarifies that two types of bath modes, which either display the strong vibronic couplings or have the frequencies close to electronic transition, are very important to the nonadiabatic dynamics. These observations are fully consistent with the physical insights. This conclusion is obtained purely based on the PCA understanding of the trajectory data, without the large involvement of pre-defined physical knowledge. The results show that the PCA approach, one of the simplest unsupervised machine learning methods, is very powerful to analyze the complicated nonadiabatic dynamics in condensed phase involving many degrees of freedom.


2021 ◽  
Vol 54 (3) ◽  
pp. 1-18
Author(s):  
Petr Spelda ◽  
Vit Stritecky

As our epistemic ambitions grow, the common and scientific endeavours are becoming increasingly dependent on Machine Learning (ML). The field rests on a single experimental paradigm, which consists of splitting the available data into a training and testing set and using the latter to measure how well the trained ML model generalises to unseen samples. If the model reaches acceptable accuracy, then an a posteriori contract comes into effect between humans and the model, supposedly allowing its deployment to target environments. Yet the latter part of the contract depends on human inductive predictions or generalisations, which infer a uniformity between the trained ML model and the targets. The article asks how we justify the contract between human and machine learning. It is argued that the justification becomes a pressing issue when we use ML to reach “elsewhere” in space and time or deploy ML models in non-benign environments. The article argues that the only viable version of the contract can be based on optimality (instead of on reliability, which cannot be justified without circularity) and aligns this position with Schurz's optimality justification. It is shown that when dealing with inaccessible/unstable ground-truths (“elsewhere” and non-benign targets), the optimality justification undergoes a slight change, which should reflect critically on our epistemic ambitions. Therefore, the study of ML robustness should involve not only heuristics that lead to acceptable accuracies on testing sets. The justification of human inductive predictions or generalisations about the uniformity between ML models and targets should be included as well. Without it, the assumptions about inductive risk minimisation in ML are not addressed in full.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajay Kumar Maddirala ◽  
Kalyana C Veluvolu

AbstractIn recent years, the usage of portable electroencephalogram (EEG) devices are becoming popular for both clinical and non-clinical applications. In order to provide more comfort to the subject and measure the EEG signals for several hours, these devices usually consists of fewer EEG channels or even with a single EEG channel. However, electrooculogram (EOG) signal, also known as eye-blink artifact, produced by involuntary movement of eyelids, always contaminate the EEG signals. Very few techniques are available to remove these artifacts from single channel EEG and most of these techniques modify the uncontaminated regions of the EEG signal. In this paper, we developed a new framework that combines unsupervised machine learning algorithm (k-means) and singular spectrum analysis (SSA) technique to remove eye blink artifact without modifying actual EEG signal. The novelty of the work lies in the extraction of the eye-blink artifact based on the time-domain features of the EEG signal and the unsupervised machine learning algorithm. The extracted eye-blink artifact is further processed by the SSA method and finally subtracted from the contaminated single channel EEG signal to obtain the corrected EEG signal. Results with synthetic and real EEG signals demonstrate the superiority of the proposed method over the existing methods. Moreover, the frequency based measures [the power spectrum ratio ($$\Gamma $$ Γ ) and the mean absolute error (MAE)] also show that the proposed method does not modify the uncontaminated regions of the EEG signal while removing the eye-blink artifact.


2021 ◽  
Author(s):  
Alexandre Oliveira Marques ◽  
Aline Nonato Sousa ◽  
Veronica Pereira Bernardes ◽  
Camila Hipolito Bernardo ◽  
Danielle Monique Reis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document