scholarly journals “Two bits less” after quantum-information conservation and their interpretation as “distinguishability / indistinguishability” and “classical / quantum”

2021 ◽  
Author(s):  
Vasil Penchev

2021 ◽  
Author(s):  
Vasil Dinev Penchev

The paper investigates the understanding of quantum indistinguishability afterquantum information in comparison with the “classical” quantum mechanics based on theseparable complex Hilbert space. The two oppositions, correspondingly “distinguishability/ indistinguishability” and “classical / quantum”, available implicitly in the concept of quantumindistinguishability can be interpreted as two “missing” bits of classical information, whichare to be added after teleportation of quantum information to be restored the initial stateunambiguously. That new understanding of quantum indistinguishability is linked to thedistinction of classical (Maxwell-Boltzmann) versus quantum (either Fermi-Dirac orBose-Einstein) statistics. The latter can be generalized to classes of wave functions (“empty” qubits) and represented exhaustively in Hilbert arithmetic therefore connectible to the foundations of mathematics, more precisely, to the interrelations of propositional logic and set theory sharing the structure of Boolean algebra and two anti-isometric copies of Peano arithmetic.







2020 ◽  
Author(s):  
Vasil Dinev Penchev

The paper discusses the origin of dark matter and dark energy from the concepts of time and the totality in the final analysis. Though both, and especially the latter, seem to be rather philosophical, nonetheless they are postulated axiomatically and interpreted physically, and the corresponding philosophical transcendentalism serves heuristically. The exposition of the article means to outline the “forest for the trees”, however, in an absolutely rigorous mathematical way, which to be explicated in detail in a future paper. The “two deductions” are two successive stage of a single conclusion mentioned above. The concept of “transcendental invariance” meaning ontologically and physically interpreting the mathematical equivalence of the axiom of choice and the well-ordering “theorem” is utilized again. Then, time arrow is a corollary from that transcendental invariance, and in turn, it implies quantum information conservation as the Noether correlate of the linear “increase of time” after time arrow. Quantum information conservation implies a few fundamental corollaries such as the “conservation of energy conservation” in quantum mechanics from reasons quite different from those in classical mechanics and physics as well as the “absence of hidden variables” (versus Einstein’s conjecture) in it. However, the paper is concentrated only into the inference of another corollary from quantum information conservation, namely, dark matter and dark energy being due to entanglement, and thus and in the final analysis, to the conservation of quantum information, however observed experimentally only on the “cognitive screen” of “Mach’s principle” in Einstein’s general relativity therefore excluding any other source of gravitational field than mass and gravity. Then, if quantum information by itself would generate a certain nonzero gravitational field, it will be depicted on the same screen as certain masses and energies distributed in space-time, and most presumably, observable as those dark energy and dark matter predominating in the universe as about 96% of its energy and matter quite unexpectedly for physics and the scientific worldview nowadays. Besides on the cognitive screen of general relativity, entanglement is available necessarily on still one “cognitive screen” (namely, that of quantum mechanics), being furthermore “flat”. Most probably, that projection is confinement, a mysterious and ad hoc added interaction along with the fundamental tree ones of the Standard model being even inconsistent to them conceptually, as far as it need differ the local space from the global space being definable only as a relation between them (similar to entanglement). So, entanglement is able to link the gravity of general relativity to the confinement of the Standard model as its projections of the “cognitive screens” of those two fundamental physical theories.



2021 ◽  
Author(s):  
Vasil Dinev Penchev

The paper interprets the concept “operator in the separable complex Hilbert space” (particalry, “Hermitian operator” as “quantity” is defined in the “classical” quantum mechanics) by that of “quantum information”. As far as wave function is the characteristic function of the probability (density) distribution for all possible values of a certain quantity to be measured, the definition of quantity in quantum mechanics means any unitary change of the probability (density) distribution. It can be represented as a particular case of “unitary” qubits. The converse interpretation of any qubits as referring to a certain physical quantity implies its generalization to non-Hermitian operators, thus neither unitary, nor conserving energy. Their physical sense, speaking loosely, consists in exchanging temporal moments therefore being implemented out of the space-time “screen”. “Dark matter” and “dark energy” can be explained by the same generalization of “quantity” to non-Hermitian operators only secondarily projected on the pseudo-Riemannian space-time “screen” of general relativity according to Einstein's “Mach’s principle” and his field equation.



2007 ◽  
Vol 17 (2) ◽  
pp. 177-183 ◽  
Author(s):  
THIERRY PAUL

We present a discussion concerning the opposition between discreteness and the continuum in quantum mechanics. In particular, it is shown that this duality was not restricted to the early days of the theory, but remains current, and features different aspects of discretisation. In particular, the discreteness of quantum mechanics is key for quantum information and quantum computation. We propose a conclusion involving a concept of completeness linking discreteness and the continuum.



2022 ◽  
Vol 6 (POPL) ◽  
pp. 1-31
Author(s):  
Xiaodong Jia ◽  
Andre Kornell ◽  
Bert Lindenhovius ◽  
Michael Mislove ◽  
Vladimir Zamdzhiev

We consider a programming language that can manipulate both classical and quantum information. Our language is type-safe and designed for variational quantum programming, which is a hybrid classical-quantum computational paradigm. The classical subsystem of the language is the Probabilistic FixPoint Calculus (PFPC), which is a lambda calculus with mixed-variance recursive types, term recursion and probabilistic choice. The quantum subsystem is a first-order linear type system that can manipulate quantum information. The two subsystems are related by mixed classical/quantum terms that specify how classical probabilistic effects are induced by quantum measurements, and conversely, how classical (probabilistic) programs can influence the quantum dynamics. We also describe a sound and computationally adequate denotational semantics for the language. Classical probabilistic effects are interpreted using a recently-described commutative probabilistic monad on DCPO. Quantum effects and resources are interpreted in a category of von Neumann algebras that we show is enriched over (continuous) domains. This strong sense of enrichment allows us to develop novel semantic methods that we use to interpret the relationship between the quantum and classical probabilistic effects. By doing so we provide a very detailed denotational analysis that relates domain-theoretic models of classical probabilistic programming to models of quantum programming.



2005 ◽  
Vol 13 (3-4) ◽  
pp. 115-120 ◽  
Author(s):  
Ðuro Koruga

Usually, we think about DNA as a molecular machinery system responsible to make proteins. Protein looks like a second side of DNA code because mapping function is based on a classical information system (chemical/physical) by code 43=64. However, in organisms like paramecium DNA works 95% as molecular machinery for proteins synthesis, while in humans it is only about 10%. Is 90% of human genetic structure "junk"? What does other 90% DNA work in human organism? What type of information system, different than classical, does DNA possess? To give answer to this question we are rethinking well-known facts of biomolecules from both classical and quantum information point of view. Basic element in our consideration is hydrogen bond, which possess both classical and quantum properties. Based on new vision of old data we develop synergetic (classical/quantum) model of DNA information processing, which may help for better understanding the functions of "junk" sequence in genetic code. We believe that "junk" sequences may be active regulatory factor of system complexity trough microtubules (centrioles) and water in living systems. Synergetic approach (classical/quantum) of information channels may open a new vision and understanding of the genomic programming and molecular interconnection on distance based on matching classical and quantum properties of hydrogen bonds and entanglement. .



Sign in / Sign up

Export Citation Format

Share Document