scholarly journals “Two bits less” after quantum-information conservation and their interpretation as “distinguishability / indistinguishability” and “classical / quantum”

2021 ◽  
Author(s):  
Vasil Dinev Penchev

The paper investigates the understanding of quantum indistinguishability afterquantum information in comparison with the “classical” quantum mechanics based on theseparable complex Hilbert space. The two oppositions, correspondingly “distinguishability/ indistinguishability” and “classical / quantum”, available implicitly in the concept of quantumindistinguishability can be interpreted as two “missing” bits of classical information, whichare to be added after teleportation of quantum information to be restored the initial stateunambiguously. That new understanding of quantum indistinguishability is linked to thedistinction of classical (Maxwell-Boltzmann) versus quantum (either Fermi-Dirac orBose-Einstein) statistics. The latter can be generalized to classes of wave functions (“empty” qubits) and represented exhaustively in Hilbert arithmetic therefore connectible to the foundations of mathematics, more precisely, to the interrelations of propositional logic and set theory sharing the structure of Boolean algebra and two anti-isometric copies of Peano arithmetic.

2020 ◽  
Author(s):  
Vasil Dinev Penchev

Any logic is represented as a certain collection of well-orderingsadmitting or not some algebraic structure such as a generalized lattice. Then universallogic should refer to the class of all subclasses of all well-orderings. One can construct amapping between Hilbert space and the class of all logics. Thus there exists acorrespondence between universal logic and the world if the latter is considered acollection of wave functions, as which the points in Hilbert space can beinterpreted. The correspondence can be further extended to the foundation ofmathematics by set theory and arithmetic, and thus to all mathematics.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The concept of quantum information is introduced as both normed superposition of two orthogonal subspaces of the separable complex Hilbert space and invariance of Hamilton and Lagrange representation of any mechanical system. The base is the isomorphism of the standard introduction and the representation of a qubit to a 3D unit ball, in which two points are chosen.The separable complex Hilbert space is considered as the free variable of quantum information and any point in it (a wave function describing a state of a quantum system) as its value as the bound variable.A qubit is equivalent to the generalization of ‘bit’ from the set of two equally probable alternatives to an infinite set of alternatives. Then, that Hilbert space is considered as a generalization of Peano arithmetic where any unit is substituted by a qubit and thus the set of natural number is mappable within any qubit as the complex internal structure of the unit or a different state of it. Thus, any mathematical structure being reducible to set theory is representable as a set of wave functions and a subspace of the separable complex Hilbert space, and it can be identified as the category of all categories for any functor represents an operator transforming a set (or subspace) of the separable complex Hilbert space into another. Thus, category theory is isomorphic to the Hilbert-space representation of set theory & Peano arithmetic as above.Given any value of quantum information, i.e. a point in the separable complex Hilbert space, it always admits two equally acceptable interpretations: the one is physical, the other is mathematical. The former is a wave function as the exhausted description of a certain state of a certain quantum system. The latter chooses a certain mathematical structure among a certain category. Thus there is no way to be distinguished a mathematical structure from a physical state for both are described exhaustedly as a value of quantum information. This statement in turn can be utilized to be defined quantum information by the identity of any mathematical structure to a physical state, and also vice versa. Further, that definition is equivalent to both standard definition as the normed superposition and invariance of Hamilton and Lagrange interpretation of mechanical motion introduced in the beginning of the paper.Then, the concept of information symmetry can be involved as the symmetry between three elements or two pairs of elements: Lagrange representation and each counterpart of the pair of Hamilton representation. The sense and meaning of information symmetry may be visualized by a single (quantum) bit and its interpretation as both (privileged) reference frame and the symmetries 𝑈𝑈(1), 𝑆𝑆𝑆 (2), and 𝑆𝑆𝑆 (3) of the Standard model.


2021 ◽  
Author(s):  
Vasil Dinev Penchev

The paper interprets the concept “operator in the separable complex Hilbert space” (particalry, “Hermitian operator” as “quantity” is defined in the “classical” quantum mechanics) by that of “quantum information”. As far as wave function is the characteristic function of the probability (density) distribution for all possible values of a certain quantity to be measured, the definition of quantity in quantum mechanics means any unitary change of the probability (density) distribution. It can be represented as a particular case of “unitary” qubits. The converse interpretation of any qubits as referring to a certain physical quantity implies its generalization to non-Hermitian operators, thus neither unitary, nor conserving energy. Their physical sense, speaking loosely, consists in exchanging temporal moments therefore being implemented out of the space-time “screen”. “Dark matter” and “dark energy” can be explained by the same generalization of “quantity” to non-Hermitian operators only secondarily projected on the pseudo-Riemannian space-time “screen” of general relativity according to Einstein's “Mach’s principle” and his field equation.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

The concepts of choice, negation, and infinity are considered jointly. The link is the quantity of information interpreted as the quantity of choices measured in units of elementary choice: a bit is an elementary choice between two equally probable alternatives. “Negation” supposes a choice between it and confirmation. Thus quantity of information can be also interpreted as quantity of negations. The disjunctive choice between confirmation and negation as to infinity can be chosen or not in turn: This corresponds to set-theory or intuitionist approach to the foundation of mathematics and to Peano or Heyting arithmetic. Quantum mechanics can be reformulated in terms of information introducing the concept and quantity of quantum information. A qubit can be equivalently interpreted as that generalization of “bit” where the choice is among an infinite set or series of alternatives. The complex Hilbert space can be represented as both series of qubits and value of quantum information. The complex Hilbert space is that generalization of Peano arithmetic where any natural number is substituted by a qubit. “Negation”, “choice”, and “infinity” can be inherently linked to each other both in the foundation of mathematics and quantum mechanics by the meditation of “information” and “quantum information”.


2021 ◽  
Author(s):  
Vasil Penchev

The quantum information introduced by quantum mechanics is equivalent to a certain generalization of classical information: from finite to infinite series or collections. The quantity of information is the quantity of choices measured in the units of elementary choice. The “qubit”, can be interpreted as that generalization of “bit”, which is a choice among a continuum of alternatives. The axiom of choice is necessary for quantum information. The coherent state is transformed into a well-ordered series of results in time after measurement. The quantity of quantum information is the transfinite ordinal number corresponding to the infinity series in question. The transfinite ordinal numbers can be defined as ambiguously corresponding “transfinite natural numbers” generalizing the natural numbers of Peano arithmetic to “Hilbert arithmetic” allowing for the unification of the foundations of mathematics and quantum mechanics.


2013 ◽  
Vol 2013 ◽  
pp. 1-15
Author(s):  
Wei Xu ◽  
Ke Zhao ◽  
Yatao Li ◽  
Peitao Cheng

This paper addresses the functional representation based on the event model. In the event model, the ontology is defined based on the theory of propositional logic to describe the connotation of the event, and the variant is defined based on the theories of domain relational calculus and set theory to express the variation range of the event, which is alterable part of the event under the constraints of the ontology. Function is an important concept in conceptual design and has its connotation and extension. The functional representation is proposed based on the event model. The ontology of event is used to describe the connotation of function and to reflect the stability of function. The variant of the event is used to represent the extension and to incarnate the variety of function. The extension of function is the change range of function under the constraints of the connotation. The proposed functional representation divides the function into the immutable part and the alterable part, facilitating the expansion of design space. A functional reasoning model is also put forward based on the event model to support the function reasoning on the computers. Finally, a simple case validates the feasibility of the model.


10.1142/12456 ◽  
2022 ◽  
Author(s):  
Douglas Cenzer ◽  
Jean Larson ◽  
Christopher Porter ◽  
Jindrich Zapletal

2012 ◽  
Vol 12 (3&4) ◽  
pp. 253-261
Author(s):  
Satyabrata Adhikari ◽  
Indranil Chakrabarty ◽  
Pankaj Agrawal

In a realistic situation, the secret sharing of classical or quantum information will involve the transmission of this information through noisy channels. We consider a three qubit pure state. This state becomes a mixed-state when the qubits are distributed over noisy channels. We focus on a specific noisy channel, the phase-damping channel. We propose a protocol for secret sharing of classical information with this and related noisy channels. This protocol can also be thought of as cooperative superdense coding. We also discuss other noisy channels to examine the possibility of secret sharing of classical information.


Sign in / Sign up

Export Citation Format

Share Document