Experimental Study of Packed Bed Heat Transfer in a Shaft Kiln to Pre-Heat Manganese Ore with Hot Air

2021 ◽  
Author(s):  
Sifiso Sambo ◽  
Lina Hockaday ◽  
Tumisang Seodigeng
2014 ◽  
Vol 625 ◽  
pp. 620-625
Author(s):  
T. Irii ◽  
S. Murata ◽  
Kenichiro Tanoue ◽  
T. Nishimura ◽  
Y. Uemura ◽  
...  

As Japan has many mountains with steep slopes, it is difficult to transport felled trees. Therefore, the development of a high-quality, compact gasifier that can cope with variations both in the amount of biomass collected and in energy demand, is necessary. Furthermore, in order to ensure that the system is used in the most efficient manner, it is necessary to increase our understanding of the reaction mechanisms involved in both the decomposition of biomass and heat transfer in the packed bed of biomass.


2013 ◽  
Vol 732-733 ◽  
pp. 78-82
Author(s):  
Ling Gao ◽  
Wen Guang Geng ◽  
Xiao Xu Ma ◽  
Xiu Li Ma ◽  
Guang Liang Luo ◽  
...  

This paper presents an experimental study on total heat transfer coefficient (ht) in oscillating heat pipe heat exchanger hot air flow tunnels, ht plays an important role in the oscillating heat pipes design process. In this paper, ht and the convective heat transfer coefficient (h) was investigated by experimentally and theoretical calculation respectively. From experimental study, the relationship between the ratio of heat transfer coefficient and the relative humidity is obtained. The results show that the ratio of ht to h increases from 5 to 20 as the relative humidity of the hot gas increasing from 19.22% to 60%. According to the experimental data, a matched curve and an empirical equation were presented, which can be described as ht=h(1.87783+0.09631x+0.0032x2).


2014 ◽  
Vol 18 (2) ◽  
pp. 443-450 ◽  
Author(s):  
Souad Messai ◽  
Ganaoui El ◽  
Jalila Sghaier ◽  
Ali Belghith

An experimental study to evaluate the convective heat transfer coefficient in a cylindrical packed bed of spherical porous alumina particles is investigated. The task consists in proposing a semi-empirical model to avoid excessive instrumentation and time consumption. The measurement of the bed temperature associated to a simple energy balances led to calculate the gas to particle heat transfer coefficient using a logarithmic mean temperature difference method. These experiments were performed at atmospheric pressure. The operating fluid is humid air. The gas velocity and temperature ranged from 1.7-3 m/s and 120-158?C, respectively. The data obtained was compared with the correlations reported in the literature. It is shown that the proposed model is in reasonable agreement with the correlation of Ranz and Marshall. Despite, many researches on experimental investigations of heat transfer coefficient in packed beds at low and average temperature are proposed, few studies presented calculation of convective heat transfer coefficient at high temperature (above 120?C). A possible application of the proposed model is drying and combustion.


Author(s):  
Tanvir E. Alam ◽  
Jaspreet Dhau ◽  
D. Y. Goswami ◽  
M. M. Rahman ◽  
Elias Stefankos

An experimental study on a laboratory scale prototype packed-bed latent heat thermal energy storage (TES) system is presented. Spherical capsules of sodium nitrate melting point of 306°C were used as the PCM and air was used as the heat transfer fluid (HTF). The storage system was operated between 286°C to 326°C and the volumetric flow rate of the HTF was varied from 110 m3/hr to 151 m3/hr. Temperature distribution along the bed and inside the capsules was monitored continuously during charging and discharging of the system. The effect of mass flow rate of the HTF on the charging and discharging time and on the pressure drop across the bed was also evaluated.


2017 ◽  
Vol 105 ◽  
pp. 4782-4787
Author(s):  
Jingyu Wang ◽  
Qing Guo ◽  
Jian Yang ◽  
Yan Liu ◽  
Qiuwang Wang

2000 ◽  
Vol 65 (10) ◽  
pp. 755-761 ◽  
Author(s):  
Anca Moise ◽  
Radu Tudose

With the purpose of establishing the mechanism responsible for the drying of granular materials in a packed bed passed by a gaseous thermic agent, experimental kinetic study was performed. In a pilot plant, the axial and radial distributions of the local humidity were determined in the non-steady regime. The results show that it is possible for three zones, each at a different state of dryness, to exist in the bed: one zone with initial humidity, one zone with variable humidity and one zone with dried material.


1986 ◽  
Vol 108 (4) ◽  
pp. 907-912 ◽  
Author(s):  
A. Goshayeshi ◽  
J. R. Welty ◽  
R. L. Adams ◽  
N. Alavizadeh

An experimental study is described in which time-averaged local heat transfer coefficients were obtained for arrays of horizontal tubes immersed in a hot fluidized bed. Bed temperatures up to 1005 K were achieved. Bed particle sizes of 2.14 mm and 3.23 mm nominal diameter were employed. An array of nine tubes arranged in three horizontal rows was used. The 50.8 mm (2 in.) diameter tubes were arranged in an equilateral triangular configuration with 15.24 cm (6 in.) spacing between centers. The center tube in each of the three rows in the array was instrumented providing data for local heat flux and surface temperature at intervals of 30 deg from the bottom to the top—a total of seven sets of values for each of the center tubes. The three sets of data are representative of the heat transfer behavior of tubes at the bottom, top, and in the interior of a typical array. Data were also obtained for a single horizontal tube to compare with the results of tube bundle performance. Superficial velocities of high-temperature air ranged from the packed-bed condition through approximately twice the minimum fluidization level. Comparisons with results for a single tube in a bubbling bed indicate only slight effects on local heat transfer resulting from the presence of adjacent tubes. Tubes in the bottom, top, and interior rows also exhibited different heat transfer performance.


Sign in / Sign up

Export Citation Format

Share Document