Probabilistic Simulation of Biogas Production from Anaerobic Co-Digestion Using Anaerobic Digestion Model No. 1: A Case Study on Agricultural Residue

2021 ◽  
Author(s):  
Amsalu Tolessa ◽  
Neill J. Goosen ◽  
Tobias M. Louw
Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1285
Author(s):  
Fabiola Filippa ◽  
Francesco Panara ◽  
Daniela Leonardi ◽  
Livia Arcioni ◽  
Ornella Calderini

In the last years the greenhouse effect has been significantly intensified due to human activities, generating large additional amounts of Greenhouse gases (GHG). The fossil fuels are the main causes of that. Consequently, the attention on the composition of the national fuel mix has significantly grown, and the renewables are becoming a more significant component. In this context, biomass is one of the most important sources of renewable energy with a great potential for the production of energy. The study has evaluated, through an LCA (Life Cycle Assessment) study, the attitude of alfalfa (Medicago sativa) as “no food” biomass alternative to maize silage (corn), in the production of biogas from anaerobic digestion. Considering the same functional unit (1 m3 of biogas from anaerobic digestion) and the same time horizon, alfalfa environmental impact was found to be much comparable to that of corn because it has an impact of about 15% higher than corn considering the total score from different categories and an impact of 5% higher of corn considering only greenhouse gases. Therefore, the analysis shows a similar environmental load in the use of alfalfa biomass in energy production compared to maize. Corn in fact, despite a better yield per hectare and yield of biogas, requires a greater amount of energy inputs to produce 1m3 of biogas, while alfalfa, which requires less energy inputs in its life cycle, has a lower performance in terms of yield. The results show the possibility to alternate the two crops for energy production from an environmental perspective.


2019 ◽  
Vol 75 (4) ◽  
pp. 18-29
Author(s):  
Athanasios Sotirios Dounavis

Olive oil production in Greece is undoubtedly linked to its history and tradition. However, large quantities of by-products are produced (with the olive oil production) which are harmful to the environment. Those environmental problems are a result of the chemical composition of the waste and its high organic load. This intense phenomenon has led to the exploration and development of methods and technolog0ies for the treatment of olive mill waste. One of the methods used is the biogas production through anaerobic digestion and its subsequent disposal for energy production. This method could be particularly appealing to the Greek islands so that there is their energy dependence from the mainland. A typical example is the island of Corfu as the problem of waste from olive oil mills is intense and its energy demands are increased. Therefore, energy production via anaerobic digestion could greatly contribute to overcoming the current situation. The purpose of this study is to design a central power plant, which is fed by biogas, produced by the anaerobic digestion of the waste oil mills in Corfu and to present various economic data regarding its construction and operation.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1586 ◽  
Author(s):  
Kiran R. Parmar ◽  
Andrew B. Ross

Hydrothermal carbonisation (HTC) has been identified as a potential route for digestate enhancement producing a solid hydrochar and a process water rich in organic carbon. This study compares the treatment of four dissimilar digestates from anaerobic digestion (AD) of agricultural residue (AGR); sewage sludge (SS); residual municipal solid waste (MSW), and vegetable, garden, and fruit waste (VGF). HTC experiments were performed at 150, 200 and 250 °C for 1 h using 10%, 20%, and 30% solid loadings of a fixed water mass. The effect of temperature and solid loading to the properties of biocoal and biochemical methane potential (BMP) of process waters are investigated. Results show that the behaviour of digestate during HTC is feedstock dependent and the hydrochar produced is a poor-quality solid fuel. The AGR digestate produced the greatest higher heating value (HHV) of 24 MJ/kg, however its biocoal properties are poor due to slagging and fouling propensities. The SS digestate process water produced the highest amount of biogas at 200 °C and 30% solid loading. This study concludes that solely treating digestate via HTC enhances biogas production and that hydrochar be investigated for its use as a soil amender.


2018 ◽  
Vol 12 (7) ◽  
pp. 580
Author(s):  
Antony P. Pallan ◽  
S. Antony Raja ◽  
C. G. Varma ◽  
Deepak Mathew D.K. ◽  
Anil K. S. ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
Author(s):  
Damaris Kerubo Oyaro ◽  
Zablon Isaboke Oonge ◽  
Patts Meshack Odira

2005 ◽  
Vol 40 (4) ◽  
pp. 491-499 ◽  
Author(s):  
Jeremy T. Kraemer ◽  
David M. Bagley

Abstract Upgrading conventional single-stage mesophilic anaerobic digestion to an advanced digestion technology can increase sludge stability, reduce pathogen content, increase biogas production, and also increase ammonia concentrations recycled back to the liquid treatment train. Limited information is available to assess whether the higher ammonia recycle loads from an anaerobic sludge digestion upgrade would lead to higher discharge effluent ammonia concentrations. Biowin, a commercially available wastewater treatment plant simulation package, was used to predict the effects of anaerobic digestion upgrades on the liquid train performance, especially effluent ammonia concentrations. A factorial analysis indicated that the influent total Kjeldahl nitrogen (TKN) and influent alkalinity each had a 50-fold larger influence on the effluent NH3 concentration than either the ambient temperature, liquid train SRT or anaerobic digestion efficiency. Dynamic simulations indicated that the diurnal variation in effluent NH3 concentration was 9 times higher than the increase due to higher digester VSR. Higher recycle NH3 loads caused by upgrades to advanced digestion techniques can likely be adequately managed by scheduling dewatering to coincide with periods of low influent TKN load and ensuring sufficient alkalinity for nitrification.


Sign in / Sign up

Export Citation Format

Share Document