Optimization of biogas production through anaerobic digestion of municipal solid waste: a case study in the capital area of Reykjavik, Iceland

Author(s):  
T. Llano ◽  
C. Arce ◽  
D.C. Finger
2021 ◽  
Vol 1 (3) ◽  
pp. 1-8
Author(s):  
Ravikiran Shet ◽  
Srikanth Mutnuri

India generates 0.15 million metric tons (MT) of solid waste per day out of which more than 80% is organic fraction. Apart from this, 38% of the households use septic tanks where proper disposal of faecal sludge is also need of the hour. Anaerobic co-digestion (ACD) of two different substrates has positive potential towards solving this problem. In the present study, ACD of organic fraction of municipal solid waste (OFMSW) and septage solids (SS) was studied at three different levels, i.e., lab-scale, pilot-scale (1 m3), and full scale- capacity (325 m3). A loading rate of 1.5 kg VS/m3 was selected. The bio-methanation potential (BMP) assay showed a maximum biogas generation, i.e., 120±20.6 mL/gmVS with 68% maximum methane concentration at a 5:1 OFMSW and SS ratio. Cumulative biogas production after 30 days was 1.6 L/gmVS. The ultimate biogas production in the pilot-scale plant was 1000±100.5 L/day with 71% methane. The plant was also efficient in removing 87% of COD and 61% of VS. The full-scale anaerobic digester was set up at Mormugao Municpal Council, Goa India wherein the objective was to co-digest OFMSW and SS. This digester showed a similar removal pattern like earlier studies i.e., 94% and 45% COD and VS removal, respectively. The average methane content of the biogas was 68%. Full-scale operation of the anaerobic digester did not show any operational problems at the chosen co-digestion conditions.


2020 ◽  
Vol 119 ◽  
pp. 109586 ◽  
Author(s):  
Seyed Mohammad Mehdi Noorbakhsh Dehkordi ◽  
Ahmad Reza Taghipour Jahromi ◽  
Ali Ferdowsi ◽  
Mohammad Shumal ◽  
Ali Dehnavi

2013 ◽  
Vol 295-298 ◽  
pp. 1834-1839
Author(s):  
Jian Chang Li ◽  
Ya Ge Yuan ◽  
Juan He ◽  
Rui Xu

Hydrolytic enzymes, which are very key enzymes in hydrolytic step of anaerobic digestion, have an important effect on substrate hydrolysis and biogas production. To research those effect, this paper have investigated the relationship between lipase activity and biogas rate with organic fraction of municipal solid waste (OFMSW) as substrate, at the mesophilic temperature and batch fermentation. The results showed that in the process of AD, the curve of lipase activity was similar as that of biogas rate. With the increase and drop of enzyme activity, biogas rate increased and dropped. When biogas rate was at its peak period, enzyme activity of lipase was at its peak period, too.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 475
Author(s):  
Omid Norouzi ◽  
Animesh Dutta

With the implementation of new policies supporting renewable natural gas production from organic wastes, Canada began replacing traditional disposal methods with highly integrated biogas production strategies. Herein, data from published papers, Canadian Biogas Association, Canada’s national statistical agency, and energy companies’ websites were gathered to gain insight into the current status of anaerobic digestion plants in recovering energy and resource from organic wastes. The availability of materials prepared for recycling by companies and local waste management organizations and existing infrastructures for municipal solid waste management were examined. Governmental incentives and discouragements in Canada and world anaerobic digestion leaders regarding organic fraction municipal solid waste management were comprehensively reviewed to identify the opportunities for developing large-scale anaerobic digestion in Canada. A range of anaerobic digestion facilities, including water resource recovery facilities, standalone digesters, and on-farm digesters throughout Ontario, were compared in terms of digestion type, digester volume, feedstock (s), and electricity capacity to better understand the current role of biogas plants in this province. Finally, technology perspectives, solutions, and roadmaps were discussed to shape the future in terms of organic fraction municipal solid waste management. The findings suggested that the biogas industry growth in Canada relies on provincial energy and waste management policies, advanced technologies for diverting organic waste from landfills, improving biogas yield using existing pretreatment methods, and educating farmers regarding digester operations.


2020 ◽  
Vol 170 ◽  
pp. 04002
Author(s):  
Shyamsing Thakur ◽  
Rahul Barjibhe

The methane yield and overall biogas generation reduce drastically in the winter and summer season. The Biogas plant operators reported better results with the co-digestion of the municipal solid waste (MSW) with cow dung in changing weather conditions. In this research work the quality and content of methane in biogas generated from biogas plant is improved by co-digestion of MSW, cow dung along with the urine with better carbon to nitrogen (C/N) Ration. We took number of experiment using different ratio of MSW and additives to improve biogas. Rigorous experimentations concluded that the co-digestion of the MSW, cowdung and urine in the proportion of (55:35:10) with equal amount water in a portable bio digester for anaerobic digestion results into better methane production with maintaining C/N ratio and reducing time duration for flammable biogas production.


2007 ◽  
pp. 357-366
Author(s):  
Jeanger P. Juanga

Optimizing anaerobic digestion aims to maximize organic waste stabilization at shortdigestion period with higher biogas production. This paper presents different strategies tooptimize the anaerobic digestion of organic fraction of municipal solid waste in combinedprocess in which early flushing and microaeration were conducted during pre-stage, Also, theinfluence of substrate particle size reduction and the advantage of thermophilic system overmesophilic in the overall digestion process are presented, Additionally, an attempt was takento employ sequential staging concept by using a mature (old) reactor which underwent acombined digestion process. Importantly, process evaluation between an optimized combinedprocess and sequential staging concept were evaluated with the main objective of optimizingthe process, Process efficiency evaluation was based on biochemical methane potential(BMP) test The overall result suggest that the combined anaerobic digestion process can beoptimized by conducting shorter duration of pre-stage at reduced volume of flushing waterwith microearation, under thennophilic condition at reduced substrate particle size of 30 mm,Nevertheless, the sequential staging concept offers an improved operation over the combinedanaerobic digestion wherein the higher specific methane yield of 11.9 L CH4/kg VS.day wasachieved, Improved waste stabilization with 86% and 79% mass and volume reduction whichcorresponds to 84% process efficiency was obtained by sequential staging process,


Sign in / Sign up

Export Citation Format

Share Document