Thermal Conductivity Evaluation for Bentonite Buffer Materials Under Elevated Temperature Conditions

2021 ◽  
Author(s):  
Seok Yoon ◽  
Gi-Jun Lee ◽  
Tae-Jin Park ◽  
Changsoo Lee ◽  
Dong-Keun Cho
2019 ◽  
Vol 32 (5-6) ◽  
pp. 243-251 ◽  
Author(s):  
Dongmei Xu ◽  
Guiquan Wang ◽  
Xiang Chen ◽  
Yanxiang Li ◽  
Yuan Liu ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
pp. 40 ◽  
Author(s):  
Justyna Knapik-Kowalczuk ◽  
Krzysztof Chmiel ◽  
Karolina Jurkiewicz ◽  
Natália Correia ◽  
Wiesław Sawicki ◽  
...  

The purpose of this paper is to examine the physical stability as well as viscoelastic properties of the binary amorphous ezetimibe–simvastatin system. According to our knowledge, this is the first time that such an amorphous composition is prepared and investigated. The tendency toward re-crystallization of the amorphous ezetimibe–simvastatin system, at both standard storage and elevated temperature conditions, have been studied by means of X-ray diffraction (XRD). Our investigations have revealed that simvastatin remarkably improves the physical stability of ezetimibe, despite the fact that it works as a plasticizer. Pure amorphous ezetimibe, when stored at room temperature, begins to re-crystallize after 14 days after amorphization. On the other hand, the ezetimibe-simvastatin binary mixture (at the same storage conditions) is physically stable for at least 1 year. However, the devitrification of the binary amorphous composition was observed at elevated temperature conditions (T = 373 K). Therefore, we used a third compound to hinder the re-crystallization. Finally, both the physical stability as well as viscoelastic properties of the ternary systems containing different concentrations of the latter component have been thoroughly investigated.


Author(s):  
Qingyang Yu ◽  
Chao Zhang ◽  
Zhenxue Dai ◽  
Chao Du ◽  
Mohamad Reza Soltanian ◽  
...  

Temperature is an important factor in designing and maintaining tunnels, especially in cold regions. We present three-dimensional numerical simulations of tunnel temperature fields at different temperature conditions. We study the tunnel temperature field in two different conditions with relatively low and high ambient temperatures representing winter and summer of northeast China. We specifically study how these temperature conditions affect tunnel temperature and its migration to surrounding rocks. We show how placing an insulation layer could affect the temperature distribution within and around tunnels. Our results show that the temperature field without using an insulation layer is closer to the air temperature in the tunnel, and that the insulation layer has shielding effects and could plays an important role in preventing temperature migration to surrounding rocks. We further analyzed how thermal conductivity and thickness of insulation layer control the temperature distribution. The thermal conductivity and thickness of insulation layer only affect the temperature of the surrounding rocks which are located at distances below ~20 m from the lining.


Sign in / Sign up

Export Citation Format

Share Document