scholarly journals Impact of Tunnel Temperature Variations on Surrounding Rocks in Cold Regions

Author(s):  
Qingyang Yu ◽  
Chao Zhang ◽  
Zhenxue Dai ◽  
Chao Du ◽  
Mohamad Reza Soltanian ◽  
...  

Temperature is an important factor in designing and maintaining tunnels, especially in cold regions. We present three-dimensional numerical simulations of tunnel temperature fields at different temperature conditions. We study the tunnel temperature field in two different conditions with relatively low and high ambient temperatures representing winter and summer of northeast China. We specifically study how these temperature conditions affect tunnel temperature and its migration to surrounding rocks. We show how placing an insulation layer could affect the temperature distribution within and around tunnels. Our results show that the temperature field without using an insulation layer is closer to the air temperature in the tunnel, and that the insulation layer has shielding effects and could plays an important role in preventing temperature migration to surrounding rocks. We further analyzed how thermal conductivity and thickness of insulation layer control the temperature distribution. The thermal conductivity and thickness of insulation layer only affect the temperature of the surrounding rocks which are located at distances below ~20 m from the lining.

Author(s):  
Leila Choobineh ◽  
Dereje Agonafer ◽  
Ankur Jain

Heterogeneous integration in microelectronic systems using interposer technology has attracted significant research attention in the past few years. Interposer technology is based on stacking of several heterogeneous chips on a common carrier substrate, also referred to as the interposer. Compared to other technologies such as System-on-Chip (SoC) or System-in-Package (SiP), interposer-based integration offers several technological advantages. However, the thermal management of an interposer-based system is not well understood. The presence of multiple heat sources in various die and the interposer itself needs to be accounted for in any effective thermal model. While a finite-element based simulation may provide a reasonable temperature prediction tool, an analytical solution is highly desirable for understanding the fundamentals of the heat transfer process in interposers. In this paper, we describe our recent work on analytical modeling of heat transfer in interposer-based microelectronic systems. The basic governing energy conservation equations are solved to derive analytical expressions for the temperature distribution in an interposer-based microelectronic system. These solutions are combined with an iterative approach to provide the three-dimensional temperature field in an interposer. Results are in excellent agreement with finite-element solutions. The analytical model is utilized to study the effect of various parameters on the temperature field in an interposer system. Results from this work may be helpful in the thermal design of microelectronic systems containing interposers.


2007 ◽  
Vol 353-358 ◽  
pp. 2003-2006 ◽  
Author(s):  
Wei Tan ◽  
Chang Qing Sun ◽  
Chun Fang Xue ◽  
Yao Dai

Method of Lines (MOLs) is introduced to solve 2-Dimension steady temperature field of functionally graded materials (FGMs). The main idea of the method is to semi–discretized the governing equation of thermal transfer problem into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method. The temperature field of FGM can be obtained by solving the ODEs with functions of thermal properties. As numerical examples, six kinds of material thermal conductivity functions, i.e. three kinds of polynomial functions, an exponent function, a logarithmic function, and a sine function are selected to simulate spatial thermal conductivity profile in FGMs respectively. The steady-state temperature fields of 2-D thermal transfer problem are analyzed by the MOLs. Numerical results show that different material thermal conductivity function has obvious different effect on the temperature field.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yuhui Wu ◽  
Xinzhi Zhou ◽  
Li Zhao ◽  
Chenlong Dong ◽  
Hailin Wang

Acoustic tomography (AT), as a noninvasive temperature measurement method, can achieve temperature field measurement in harsh environments. In order to achieve the measurement of the temperature distribution in the furnace and improve the accuracy of AT reconstruction, a temperature field reconstruction algorithm based on the radial basis function (RBF) interpolation method optimized by the evaluation function (EF-RBFI for short) is proposed. Based on a small amount of temperature data obtained by the least square method (LSM), the RBF is used for interpolation. And, the functional relationship between the parameter of RBF and the root-mean-square (RMS) error of the reconstruction results is established in this paper, which serves as the objective function for the effect evaluation, so as to determine the optimal parameter of RBF. The detailed temperature description of the entire measured temperature field is finally established. Through the reconstruction of three different types of temperature fields provided by Dongfang Boiler Works, the results and error analysis show that the EF-RBFI algorithm can describe the temperature distribution information of the measured combustion area globally and is able to reconstruct the temperature field with high precision.


2020 ◽  
Vol 16 (10) ◽  
pp. 155014772094520
Author(s):  
Yanwei Niu ◽  
Yong’e Wang ◽  
Yingying Tang

Through decades of operation, deformation fluctuation becomes a central problem affecting the normal operating of concrete truss combination arch bridge. In order to clarify the mechanism of temperature-induced deformation and its impact on structural stress distribution, this article reports on the temperature distribution and its effect on the deformation of concrete truss combination arch bridge based on bridge health monitoring on a proto bridge with 138 m main span. The temperature distribution and deformation characteristics of the bridge structure in deep valley area are studied. Both of the daily and yearly temperature variation and structural deformation are studied based on bridge health monitoring. Using the outcome of monitoring data, three-dimensional solid finite element models are established to analyze the mechanism of temperature-induced deformation of the whole bridge under different temperature fields. The influence of temperature-induced effect is discussed on local damage based on the damage observation of the background bridge. The outcome of comparisons with field observation validates the analysis results. The relevant monitoring and simulation result can be referenced for the design and evaluation of similar bridges.


1991 ◽  
Vol 113 (3) ◽  
pp. 627-634 ◽  
Author(s):  
K. Vafai ◽  
J. Ettefagh

The present work centers around a numerical three-dimensional transient investigation of the effects of axial convection on flow and temperature fields inside an open-ended annulus. The transient behavior of the flow field through the formation of a three-dimensional flow field and its subsequent effect on the temperature distribution at different axial locations within the annulus were analyzed by both finite difference and finite element methods. The results show that the axial convection has a distinctly different influence on the temperature and velocity fields. It is found that in the midportion of the annulus a two-dimensional assumption with respect to the temperature distribution can lead to satisfactory results for Ra<10,000. However, such an assumption is improper with respect to the flow field. Furthermore, it is shown that generally the errors for a two-dimensional assumption in the midportion of the annulus are less at earlier times (t<50Δt) during the transient development of the flow and temperature fields.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
R. Uyhan

An axisymmetric laser beam, moving with constant speed, heats a thin infrared absorbing layer sandwiched between two plastic sheets. We use a simplified theoretical model to study the three-dimensional unsteady temperature field produced by the moving laser beam.


2012 ◽  
Vol 57 (4) ◽  
pp. 1111-1116 ◽  
Author(s):  
M. Maj ◽  
W. Oliferuk

In the present paper the onset of plastic strain localization was determined using two independent methods based on strain and temperature field analysis. The strain field was obtained from markers displacement recorded using visible light camera. In the same time, on the other side of the specimen, the temperature field was determined by means of infrared camera. The objective of this work was to specify the conditions when the non-uniform temperature distribution can be properly used as the indicator of plastic strain localization. In order to attain the objective an analysis of strain and temperature fields for different deformation rates were performed. It has been shown, that for given experimental conditions, the displacement rate 2000 mm/min is a threshold, above which the non-uniform temperature distribution can be used as the indicator of plastic strain localization.


2014 ◽  
Vol 1079-1080 ◽  
pp. 553-557
Author(s):  
Tao Wan

When the large oil-immersed transformer start with heavy load in cold regions, due to the high viscosity of the oil at low temperatures, the flow of the oil is extremely slow in the early start of heavy load, resulting in a negative heat radiation. At the same time, the winding and the core are rapidly increasing heat in the early start of heavy load. Rapid increase in heat and the lack of heat dissipation caused a series of problems. In this paper, we study the process of heating and cooling when the large oil-immersed transformer start with heavy load in cold region and takes a transformer of 31.5MVA as example to build a three-dimensional model ,the model is based on the actual size of the transformer. We use the finite volume method to calculate three-dimensional temperature field distribution changing with time when the oil-immersed transformer startup with heavy load in - 35 °C,-30 °C and-25 °C three cases. The results show that the viscosity coefficient of transformer oil is very high at low temperatures. In the early start of the transformer, because of the poor fluidity of the oil, the heat cannot be dissipated in time and the transformer local overheating near the winding. Then we analyzes the damage of local overheating for a short period of time in the transformer, especially the damage of the oiled paper's insulation At last ,we analysis of the causes of transformer internal local overheating and give some measures to avoid local overheating when oil-immersed transformer start with heavy load in cold regions.KEYWORDS: oil-immersed transformer, cold regions, start with heavy load, FVM, three-dimensional temperature distribution


2019 ◽  
Vol 2 (4) ◽  
pp. 6
Author(s):  
Liangquan Wang ◽  
Fei Shang ◽  
Deren Kong

The warheads such as missiles and artillery shells have a certain speed of motion during the explosion. Therefore, it is more practical to study the explosion damage of ammunition under motion. The different speeds of the projectiles have a certain influence on the temperature field generated by the explosion. In this paper, AUTODYN is used to simulate the process of projectile dynamic explosion. In the experiment, the TNT spherical bare charges with the TNT equivalent of 9.53kg and the projectile attack speed of 0,421,675,1020m/s were simulated in the infinite air domain. The temperature field temperature peaks and temperature decay laws at different charge rates and the multi-function regression fitting method were used to quantitatively study the functional relationship between the temperature and peak temperature correlation calculations of static and dynamic explosion temperature fields. The results show that the temperature distribution of the dynamic explosion temperature field is affected by the velocity of the charge, and the temperature distribution of the temperature field is different with the change of the charge velocity. Through the analysis and fitting of the simulation data, the temperature calculation formula of the static and dynamic explosion temperature field is obtained, which can better establish the relationship between the temperature peak of the static and dynamic explosion temperature field and various influencing factors, and use this function. Relational calculations can yield better results and meet the accuracy requirements of actual tests.


Sign in / Sign up

Export Citation Format

Share Document